Application of Polymerization Activator in the Course of Synthesis of N-Isopropylacrylamide Derivatives for Thermally Triggered Release of Naproxen Sodium
نویسندگان
چکیده
Poly-N-isopropylacrylamide (polyNIPA) is an extensively studied polymer in the field of controlled drug delivery. PolyNIPA contains carbonyl and amide groups along a hydrophobic chain. In an aqueous environment, crosslinked polyNIPA forms a gel characterized by a reversible volume phase transition temperature (VPTT), in response to changes in the external environment excited by the temperature factor. NIPA-based polymers were synthesized by a surfactant-free precipitation polymerization (SFPP) method at a temperature of 70 °C using the free radical initiator potassium persulfate (KPS) and at 35 °C using redox initiator system KPS with N,N,N',N'-tetramethylethylenediamine (TEMED). The synthesized products were evaluated via dynamic light scattering (DLS), nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). The chemical structure, molecular mass, and hydrodynamic diameter of obtained particles, as well as the effects of synthesized polymers on the release of the active substance, naproxen sodium (NS), from hydroxypropyl methyl cellulose (HPMC)-based hydrogels were assessed. The use of the TEMED activator affected the particle size, as well as the release kinetics of NS. The insertion of TEMED into reactant mixtures may be applied to modify the release kinetics of NS from hydrogel preparations.
منابع مشابه
Synthesis and Formulation of Thermosensitive Drug Carrier for Temperature Triggered Delivery of Naproxen Sodium.
Nanospheres and microspheres are known as a multipurpose compounds and are used in various branches of science. Recent controlled delivery systems for drugs are also based on poly-micro and nanospheres. In our study we describe an investigation of the influence of thermosensitive polymer N-isopropylacrylamide (NIPA) on the release of the drug naproxen sodium (NS) with a hydrogel hydroxypropyl m...
متن کاملDual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کاملThermosensitive Microgels of Poly-n-isopropylacrylamide for Drug Carriers--practical Approach to Synthesis.
The aim of the work is to present the main actual information on the preparation of polymers, derivatives of N-isopropylacrylamide, formed into microgels. The most often used comonomers, crosslinkers, and initiator systems are gathered herein. The known methods of emulsion polymerization and precipitation polymerization are also described, including the application of the surfactants, as well a...
متن کاملDesign and Formulation of Once Daily Naproxen Sustained Release Tablet Matrix from Methocel K 15M CR and Methocel K 100M CR
The purpose of this work was to develop once daily sustained release (SR) matrix tablets of naproxen, an anti-inflammatory agent. The tablets were prepared by wet granulation method along with hydrophilic matrix materials like Methocel K 15M CR and Methocel K 100M CR. The granules were evaluated for bulk density, angle of repose, compressibility index, total porosity and drug content. The ...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کامل