Limited Set quantifiers over Countable Linear Orderings
نویسندگان
چکیده
In this paper, we study several sublogics of monadic secondorder logic over countable linear orderings, such as first-order logic, firstorder logic on cuts, weak monadic second-order logic, weak monadic second-order logic with cuts, as well as fragments of monadic secondorder logic in which sets have to be well ordered or scattered. We give decidable algebraic characterizations of all these logics and compare their respective expressive power.
منابع مشابه
Two-Variable Logic over Countable Linear Orderings
We study the class of languages of finitely-labelled countable linear orderings definable in twovariable first-order logic. We give a number of characterisations, in particular an algebraic one in terms of circle monoids, using equations. This generalises the corresponding characterisation, namely variety DA, over finite words to the countable case. A corollary is that the membership in this cl...
متن کاملRegular Languages of Words over Countable Linear Orderings
We develop an algebraic model for recognizing languages of words indexed by countable linear orderings. This notion of recognizability is effectively equivalent to definability in monadic second-order (MSO) logic. The proofs also imply the first known collapse result for MSO logic over countable linear orderings.
متن کاملLogic and Bounded-Width Rational Languages of Posets over Countable Scattered Linear Orderings
In this paper we consider languages of labelled N -free posets over countable and scattered linear orderings. We prove that a language of such posets is series-rational if and only if it is recognizable by a finite depth-nilpotent algebra if and only if it is bounded-width and monadic second-order definable. This extends previous results on languages of labelled N -free finite and ω-posets and ...
متن کاملCountably Complementable Linear Orderings
We say that a countable linear ordering L is countably complementable if there exists a linear ordering L, possibly uncountable, such that for any countable linear ordering B, L does not embed into B if and only if B embeds into L. We characterize the linear orderings which are countably complementable. We also show that this property is equivalent to the countable version of the finitely faith...
متن کاملFactorization forests for infinite words and applications to countable scattered linear orderings
The theorem of factorization forests of Imre Simon shows the existence of nested factorizations — à la Ramsey — for finite words. This theorem has important applications in semigroup theory, and beyond. We provide two improvements to the standard result. First we improve on all previously known bounds. Second, we extend it to ‘every linear ordering’. We use this last variant in a simplified pro...
متن کامل