Hilbert – Schmidt Operators vs . Integrable Systems of Elliptic Calogero – Moser Type III . The Heun Case ⋆

نویسنده

  • Simon N. M. RUIJSENAARS
چکیده

The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d 2 /dx 2 + V (g; x), where the potential is an elliptic function depending on a coupling vector g ∈ R 4. Alternatively, this operator arises from the BC 1 specialization of the BC N elliptic nonrelativistic Calogero–Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on g, we associate to this operator a self-adjoint operator H(g) on the Hilbert space H = L 2 ([0, ω 1 ], dx), where 2ω 1 is the real period of V (g; x). For this association and a further analysis of H(g), a certain Hilbert–Schmidt operator I(g) on H plays a critical role. In particular, using the intimate relation of H(g) and I(g), we obtain a remarkable spectral invariance: In terms of a coupling vector c ∈ R 4 that depends linearly on g, the spectrum of H(g(c)) is invariant under arbitrary permutations σ(c), σ ∈ S 4 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Integrable Systems Elliptic Integrable Systems of Calogero-moser Type: Some New Results on Joint Eigenfunctions

We present results on special eigenfunctions for differences of elliptic CalogeroMoser type Hamiltonians. We show that these results have a bearing on the existence of joint Hilbert space eigenfunctions for the commuting Hamiltonians.

متن کامل

On Algebraically Integrable Differential Operators on an Elliptic Curve

We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several...

متن کامل

Geometric construction of elliptic integrable systems and N = 1∗ superpotentials

We show how the elliptic Calogero-Moser integrable systems arise from a symplectic quotient construction, generalising the construction for AN−1 by Gorsky and Nekrasov to other algebras. This clarifies the role of (twisted) affine Kac-Moody algebras in elliptic Calogero-Moser systems and allows for a natural geometric construction of Lax operators for these systems. We elaborate on the connecti...

متن کامل

Hilbert Schemes , Separated Variables , and D -

We explain Sklyanin's separation of variables in geometrical terms and construct it for Hitchin and Mukai integrable systems. We construct Hilbert schemes of points on T * Σ for Σ = C, C * or elliptic curve, and on C 2 /Γ and show that their complex deformations are integrable systems of Calogero-Sutherland-Moser type. We present the hyperkähler quotient constructions for Hilbert schemes of poi...

متن کامل

The Heun Equation and the Calogero-moser-sutherland System Ii: Perturbation and Algebraic Solution

We apply a method of perturbation for the BC1 Inozemtsev model from the trigonometric model and show the holomorphy of perturbation. Consequently, the convergence of eigenvalues and eigenfuncions which are expressed as formal power series is proved. We investigate also the relationship between L space and some finite dimensional space of elliptic functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009