Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation.

نویسندگان

  • Anna V Ivanina
  • Ilya O Kurochkin
  • Larry Leamy
  • Inna M Sokolova
چکیده

Intertidal bivalves are commonly exposed to multiple stressors including periodic hypoxia, temperature fluctuations and pollution, which can strongly affect energy metabolism. We used top-down control and elasticity analyses to determine the interactive effects of intermittent hypoxia, cadmium (Cd) exposure and acute temperature stress on mitochondria of the eastern oyster Crassostrea virginica. Oysters were acclimated at 20°C for 30 days in the absence or presence of 50 μg l(-1) Cd and then subjected to a long-term hypoxia (6 days at <0.5% O(2) in seawater) followed by normoxic recovery. Mitochondrial function was assessed at the acclimation temperature (20°C), or at elevated temperature (30°C) mimicking acute temperature stress in the intertidal zone. In the absence of Cd or temperature stress, mitochondria of oysters showed high resilience to transient hypoxia. In control oysters at 20°C, hypoxia/reoxygenation induced elevated flux capacity of all three studied mitochondrial subsystems (substrate oxidation, phosphorylation and proton leak) and resulted in a mild depolarization of resting mitochondria. Elevated proton conductance and enhanced capacity of phosphorylation and substrate oxidation subsystems may confer resistance to hypoxia/reoxygenation stress in oyster mitochondria by alleviating production of reactive oxygen species and maintaining high aerobic capacity and ATP synthesis rates during recovery. Exposure to environmental stressors such as Cd and elevated temperatures abolished the putative adaptive responses of the substrate oxidation and phosphorylation subsystems, and strongly enhanced proton leak in mitochondria of oysters subjected to hypoxia/reoxygenation stress. Our findings suggest that Cd exposure and acute temperature stress may lead to the loss of mitochondrial resistance to hypoxia and reoxygenation and thus potentially affect the ability of oysters to survive periodic oxygen deprivation in coastal and estuarine habitats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cadmium affects metabolic responses to prolonged anoxia and reoxygenation in eastern oysters (Crassostrea virginica).

Benthic marine organisms such as mollusks are often exposed to periodic oxygen deficiency (due to the tidal exposure and/or seasonal expansion of the oxygen-deficient dead zones) and pollution by metals [e.g., cadmium, (Cd)]. These stressors can strongly affect mollusks' survival; however, physiological mechanisms of their combined effects are not fully understood. We studied the effects of Cd ...

متن کامل

Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters.

Combined effects of temperature and a toxic metal, cadmium (Cd), on energy metabolism were studied in a model marine bivalve, the eastern oyster Crassostrea virginica, acclimated at 20, 24 and 28 degrees C and exposed to 50microgl(-1) of Cd. Both increasing temperature and Cd exposure led to a rise in standard metabolic rates, and combined stressors appeared to override the capability for aerob...

متن کامل

Effects of intermittent hypoxia on oxidative stress and protein degradation in molluscan mitochondria.

Oxygen fluctuations represent a common stressor in estuarine and intertidal environments and can compromise the mitochondrial integrity and function in marine organisms. We assessed the role of mitochondrial protection mechanisms (ATP-dependent and -independent mitochondrial proteases, and antioxidants) in tolerance to intermittent hypoxia or anoxia in three species of marine bivalves: hypoxia-...

متن کامل

Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae).

Marine intertidal mollusks, such as oysters, are exposed to multiple stressors in estuaries, including varying environmental temperature and levels of trace metals, which may interactively affect their physiology. In order to understand the combined effects of cadmium and elevated temperature on mitochondrial bioenergetics of marine mollusks, respiration rates and mitochondrial volume changes w...

متن کامل

Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).

Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 18  شماره 

صفحات  -

تاریخ انتشار 2012