Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays

نویسندگان

  • Xiangqian Liu
  • Nikos D. Sidiropoulos
چکیده

Unlike low-rank matrix decomposition, which is generically nonunique for rank greater than one, low-rank threeand higher dimensional array decomposition is unique, provided that the array rank is lower than a certain bound, and the correct number of components (equal to array rank) is sought in the decomposition. Parallel factor (PARAFAC) analysis is a common name for low-rank decomposition of higher dimensional arrays. This paper develops Cramér–Rao Bound (CRB) results for low-rank decomposition of threeand four-dimensional (3-D and 4-D) arrays, illustrates the behavior of the resulting bounds, and compares alternating least squares algorithms that are commonly used to compute such decompositions with the respective CRBs. Simple-to-check necessary conditions for a unique low-rank decomposition are also provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Cramer-Rao Inequality for Randomly Censored Data

As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...

متن کامل

Reduction of CRB in Arbitrary Pre-designed Arrays Using Alter an Element Position

Simultaneous estimation of range and angle of close emitters usually requires a multidimensional search. This paper offers an algorithm to improve the position of an element of any array designed on the basis of some certain or random rules. In the proposed method one element moves on its original direction, i.e., keeping the vertical distance to each source, to reach the constellation with les...

متن کامل

Cramer-Rao lower bounds for atomic decomposition

In a previous paper [1] we presented a method for atomic decomposition with chirped, Gabor functions based on maximum likelihood estimation. In this paper we present the Cramér-Rao lower bounds for estimating the seven chirp parameters, and the results of a simulation showing that our sub-optimal, but computationally tractable, estimators perform well in comparison to the bound at low signal-to...

متن کامل

Posterior Cramer-Rao bounds for discrete-time nonlinear filtering

A mean-square error lower bound for the discretetime nonlinear filtering problem is derived based on the Van Trees (posterior) version of the Cramér–Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahe...

متن کامل

Approximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters

-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001