Principal angles and principal azimuths of frustrated total internal reflection and optical tunneling by an embedded low-index thin film.
نویسندگان
چکیده
The condition for obtaining a differential (or ellipsometric) quarter-wave retardation when p- and s-polarized light of wavelength λ experience frustrated total internal reflection (FTIR) and optical tunneling at angles of incidence ϕ ≥ the critical angle by a transparent thin film (medium 1) of low refractive index n1 and uniform thickness d, which is embedded in a transparent bulk medium 0 of high refractive index n0 takes the simple form: -tanh2 x = tan δp tan δs, in which x = 2πn1(d/λ)(N2sin2ϕ - 1)(1/2), N = n0/n1, and δp, δs are 01 interface Fresnel reflection phase shifts for the p and s polarizations. From this condition, the ranges of the principal angle and normalized film thickness d/λ are obtained explicitly. At a given principal angle, the associated principal azimuths ψr, ψt in reflection and transmission are determined by tan2ψr = -sin 2δs/sin 2δp and tan2ψt = -tan δp/tan δs, respectively. At a unique principal angle ϕe given by sin2ϕe = 2/(N2 + 1), ψr = ψt = 45° and linear-to-circular polarization conversion is achieved upon FTIR and optical tunneling simultaneously. The intensity transmittances of p- and s-polarized light at any principal angle are given by τp = tan δp/tan (δp - δs) and τs = -tan δs/tan (δp - δs), respectively. The efficiency of linear-to-circular polarization conversion in optical tunneling is maximum at ϕe.
منابع مشابه
Phase shifts in frustrated total internal reflection and optical tunneling by an embedded low-index thin film.
Simple and explicit expressions for the phase shifts that p- and s-polarized light experience in frustrated total internal reflection (FTIR) and optical tunneling by an embedded low-index thin film are obtained. The differential phase shifts in reflection and transmission deltar, deltat are found to be identical, and the associated ellipsometric parameters psir, psit are governed by a simple re...
متن کاملSimplified design of thin-film polarizing beam splitter using embedded symmetric trilayer stack.
An analytically tractable design procedure is presented for a polarizing beam splitter (PBS) that uses frustrated total internal reflection and optical tunneling by a symmetric LHL trilayer thin-film stack embedded in a high-index prism. Considerable simplification arises when the refractive index of the high-index center layer H matches the refractive index of the prism and its thickness is qu...
متن کاملEmbedded centrosymmetric multilayer stacks as complete-transmission quarter-wave and half-wave retarders under conditions of frustrated total internal reflection.
A centrosymmetric multilayer stack of two transparent materials, which is embedded in a high-index prism, can function as a complete-transmission quarter-wave or half-wave retarder (QWR or HWR) under conditions of frustrated total internal reflection. The multilayer consists of a high-index center layer sandwiched between two identical low-index films with high-index-low-index bilayers repeated...
متن کاملWide-angle, high-extinction-ratio, infrared polarizing beam splitters using frustrated total internal reflection by an embedded centrosymmetric multilayer.
A centrosymmetric multilayer stack of two transparent thin-film materials, which is embedded in a high-index prism, is designed to function as an efficient polarizer or polarizing beam splitter (PBS) under conditions of frustrated total internal reflection over an extended range of incidence angles. The S(LH)(k)LHL(HL)(k)S multilayer structure consists of a high-index center layer H sandwiched ...
متن کاملReturn-path, multiple-principal-angle, internal-reflection ellipsometer for measuring IR optical properties of aqueous solutions.
A retroreflection (return-path) spectroscopic ellipsometer without a wave plate is described that uses an IR-transparent high-refractive-index hemicylindrical semiconductor substrate to measure the optical properties of aqueous solutions from multiple principal angles and multiple principal azimuths of attenuated internal reflection (AIR) at the semiconductor-solution interface. The pseudo-Brew...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 28 6 شماره
صفحات -
تاریخ انتشار 2011