Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.

نویسندگان

  • J O Bullock
  • F S Cohen
  • J R Dankert
  • W A Cramer
چکیده

A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment are very similar, if not indistinguishable, implying that the NH2-terminal, two-thirds of the colicin E1 molecule, does not significantly influence its channel properties. The channel-forming activity of both polypeptides is dependent upon the presence of a membrane potential, negative on the trans side of the membrane. The average single channel conductance of colicin E1 and the COOH-terminal fragment is 20.9 +/- 3.9 and 19.1 +/- 2.9 picosiemens, respectively. The rate at which both proteins form conducting channels increases as the pH is lowered from 7 to 5. Both molecules require negatively charged lipids for activity to be expressed, exhibit the same ion selectivity, and rectify the current to the same extent. Both polypeptides associate irreversibly with the membrane in the absence of voltage, but subsequent formation of conducting channels requires a negative membrane potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of the immunity protein-reactive domain in unmodified and chemically modified COOH-terminal peptides of colicin E1.

The region of the colicin E1 polypeptide that interacts with immunity protein has been localized to a 168-residue COOH-terminal peptide. This is the length of a proteolytically generated peptide fragment of colicin E1 against which imm+ function can be demonstrated in osmotically shocked cells. The role of particular amino acids of the COOH-terminal peptide in the expression of the immune pheno...

متن کامل

Site-directed mutagenesis of the COOH-terminal region of colicin A: effect on secretion and voltage-dependent channel activity.

A large number of mutants introducing point mutations and deletions into the COOH-terminal domain of colicin A have been constructed by using site-directed mutagenesis. The COOH-terminal domain carries the channel activity. The effects of the alterations in the polypeptide chain on the secretion of colicin A by colicinogenic cells have been investigated. All deletions and some mutations were fo...

متن کامل

Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore.

Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties ...

متن کامل

Structure-function relationships for a voltage-dependent ion channel: Properties of COOH-terminal fragments of colicin El (cyanogen bromide and protease cleavage/polyacrylamide gel electrophoresis/planar lipid bilayer membrane/single channel

The effects on planar lipid bilayer membranes of carboxyl-terminal fragments derived from the bacteriocin colicin El by either proteolysis or CNBr cleavage are indistinguishable from those of the voltage-dependent parent colicin molecule. An upper limit to the length of the COOH-terminal peptide required for channel formation is 152 amino acid residues from the COOHterminal end, as indicated by...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 16  شماره 

صفحات  -

تاریخ انتشار 1983