Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.
نویسندگان
چکیده
Cyclodextrin glycosyltransferase (CGTase) enzymes from various bacteria catalyze the formation of cyclodextrins from starch. The Bacillus stearothermophilus maltogenic alpha-amylase (G2-amylase is structurally very similar to CGTases, but converts starch into maltose. Comparison of the three-dimensional structures revealed two large differences in the substrate binding clefts. (i) The loop forming acceptor subsite +3 had a different conformation, providing the G2-amylase with more space at acceptor subsite +3, and (ii) the G2-amylase contained a five-residue amino acid insertion that hampers substrate binding at the donor subsites -3/-4 (Biochemistry, 38 (1999) 8385). In an attempt to change CGTase into an enzyme with the reaction and product specificity of the G2-amylase, which is used in the bakery industry, these differences were introduced into Thermoanerobacterium thermosulfurigenes CGTase. The loop forming acceptor subsite +3 was exchanged, which strongly reduced the cyclization activity, however, the product specificity was hardly altered. The five-residue insertion at the donor subsites drastically decreased the cyclization activity of CGTase to the extent that hydrolysis had become the main activity of enzyme. Moreover, this mutant produces linear products of variable sizes with a preference for maltose and had a strongly increased exo-specificity. Thus, CGTase can be changed into a starch hydrolase with a high exo-specificity by hampering substrate binding at the remote donor substrate binding subsites.
منابع مشابه
Engineering of Hydrolysis Reaction Specificity in the Transglycosylase Cyclodextrin Glycosyltransferase
Cyclodextrin glycosyltransferase (CGTase) is a member of the a-amylase family, a large group of enzymes that act on a-glycosidic bonds in starch and related compounds. Over twenty different reaction and product specificities have been found in this family. Although three-dimensional structure elucidation and the biochemical characterization of site-directed mutants have yielded a detailed insig...
متن کاملGlucoamylase: structure/function relationships, and protein engineering.
Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases ...
متن کاملImproved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge.
Cyclodextrin glycosyltransferase (CGTase) catalyzes the formation of cyclodextrins from starch. Among the CGTases with known three-dimensional structure, Thermoanaerobacterium thermosulfurigenes CGTase has the highest thermostability. By replacing amino acid residues in the B-domain of Bacillus circulans CGTase with those from T. thermosulfurigenes CGTase, we identified a B. circulans CGTase mu...
متن کاملThe role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity.
Cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) is used for the industrial production of cyclodextrins. Its application, however, is hampered by the limited cyclodextrin product specificity and the strong inhibitory effect of cyclodextrins on CGTase activity. Recent structural studies have identified Arg47 in the Bacillus circulans strain 251 CGTase as an active-site residue interacting...
متن کاملCyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase.
Extensive characterization of the thermostable alpha-amylase of Clostridium thermosulfurogenes EM1, recently reclassified as Thermoanaerobacterium thermosulfurigenes, clearly demonstrated that the enzyme is a cyclodextrin glycosyltransferase (CGTase). Product analysis after incubation of the enzyme with starch revealed formation of alpha-, beta-, and gamma-cyclodextrins, as well as linear sugar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2003