Heisenberg Uncertainty Inequality for Gabor Transform

نویسندگان

  • ASHISH BANSAL
  • AJAY KUMAR
چکیده

We discuss the Heisenberg uncertainty inequality for groups of the form K Rn , K is a separable unimodular locally compact group of type I. This inequality is also proved for Gabor transform for several classes of groups of the form K Rn . Mathematics subject classification (2010): Primary 43A32; Secondary 43A30, 22D10, 22D30, 22E25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

A Stochastic Heisenberg Inequality

An analogue of the Fourier transform will be introduced for all square integrable continuous martingale processes whose quadratic variation is deterministic. Using this transform we will formulate and prove a stochastic Heisenberg inequality.

متن کامل

Uncertainty Principle in Terms of Entropy for the Riemann-liouville Operator

We prove Hausdorff-Young inequality for the Fourier transform connected with Riemann-Liouville operator. We use this inequality to establish the uncertainty principle in terms of entropy. Next, we show that we can derive the Heisenberg-Pauli-Weyl inequality for the precedent Fourier transform.

متن کامل

Heisenberg Uncertainty Principle for the q-Bessel Fourier transform

In this paper we uses an I.I. Hirschman-W. Beckner entropy argument to give an uncertainty inequality for the q-Bessel Fourier transform: Fq,vf(x) = cq,v ∫ ∞ 0 f(t)jv(xt, q 2)t2v+1dqt, where jv(x, q) is the normalized Hahn-Exton q-Bessel function.

متن کامل

Clifford Algebra Cl3, 0-Valued Wavelet Transformation, Clifford Wavelet Uncertainty inequality and Clifford Gabor Wavelets

In this paper, it is shown how continuous Clifford Cl3,0-valued admissible wavelets can be constructed using the similitude group SIM(3), a subgroup of the affine group of R3. We express the admissibility condition in terms of a Cl3,0 Clifford Fourier transform and then derive a set of important properties such as dilation, translation and rotation covariance, a reproducing kernel, and show how...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016