A conserved histidine is essential for glycerolipid acyltransferase catalysis.

نویسندگان

  • R J Heath
  • C O Rock
چکیده

Sequence analysis of membrane-bound glycerolipid acyltransferases revealed that proteins from the bacterial, plant, and animal kingdoms share a highly conserved domain containing invariant histidine and aspartic acid residues separated by four less conserved residues in an HX4D configuration. We investigated the role of the invariant histidine residue in acyltransferase catalysis by site-directed mutagenesis of two representative members of this family, the sn-glycerol-3-phosphate acyltransferase (PlsB) and the bifunctional 2-acyl-glycerophosphoethanolamine acyltransferase/acyl-acyl carrier protein synthetase (Aas) of Escherichia coli. Both the PlsB[H306A] and Aas[H36A] mutants lacked acyltransferase activity. However, the Aas[H36A] mutant retained significant acyl-acyl carrier protein synthetase activity, illustrating that the lack of acyltransferase activity was specifically associated with the H36A substitution. The invariant aspartic acid residue in the HX4D pattern was also important. The substitution of aspartic acid 311 with glutamic acid in PlsB resulted in an enzyme with significantly reduced catalytic activity. Substitution of an alanine at this position eliminated acyltransferase activity; however, the PlsB[D311A] mutant protein did not assemble into the membrane, indicating that aspartic acid 311 is also important for the proper folding and membrane insertion of the acyltransferases. These data are consistent with a mechanism for glycerolipid acyltransferase catalysis where the invariant histidine functions as a general base to deprotonate the hydroxyl moiety of the acyl acceptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved seven amino acid stretch important for murine mitochondrial glycerol-3-phosphate acyltransferase activity. Significance of arginine 318 in catalysis.

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and committed step in glycerolipid biosynthesis. We previously cloned the cDNA sequence to murine mitochondrial GPAT (Yet, S-F., Lee, S., Hahm, Y. T., and Sul, H.S. (1993) Biochemistry 32, 9486-9491). We expressed the protein in insect cells which was targeted to mitochondria, purified, and reconstituted mitochondrial GPAT activi...

متن کامل

Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.

4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolysis of 4-CBA-CoA to 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA) via a nucleophilic aromatic substitution pathway involving the participation of an active site carboxylate side chain in covalent catalysis. In this paper we report on the identification of conserved aspartate, histidine, and tryptophan residues essential to 4-CBA...

متن کامل

Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction.

Alignment of amino acid sequences from various acyltransferases [sn-glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT), acyl-CoA:dihydroxyacetone-phosphate acyltransferase (DHAPAT), 2-acylglycerophosphatidylethanolamine acyltransferase (LPEAT)] reveals four regions of strong homology, which we have labeled blocks I-IV. The consensus sequence for each cons...

متن کامل

Mutagenesis of a plastidial lysophosphatidic acid acyltransferase.

A combination of site-directed and random mutagenesis generated sequence variants of a plastidial lysophosphatidic acid acyltransferase. Alanine substitutions of residues present within two conserved motifs including the putative catalytic histidine resulted in a loss of acyltransferase activity assessed as complementation competence. Substitutions at five sites within the central core resulted...

متن کامل

Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism.

Recently, serine carboxypeptidase-like (SCPL) proteins that catalyze transacylation reactions in plant secondary metabolism have been identified from wild tomato and Arabidopsis. These include sinapoylglucose: choline sinapoyltransferase (SCT), an enzyme that functions in Arabidopsis sinapate ester synthesis. SCT and the other known SCPL acyltransferases all share the conserved serine, aspartic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 6  شماره 

صفحات  -

تاریخ انتشار 1998