Enhanced cellular uptake of engineered spider silk particles.
نویسندگان
چکیده
Drug delivery systems allow tissue/cell specific targeting of drugs in order to reduce total drug amounts administered to an organism and potential side effects upon systemic drug delivery. Most drug delivery systems are polymer-based, but the number of possible materials is limited since many commercially available polymers induce allergic or inflammatory responses or lack either biodegradability or the necessary stability in vivo. Spider silk proteins represent a new class of (bio)polymers that can be used as drug depots or drug delivery systems. The recombinant spider silk protein eADF4(C16), which can be processed into different morphologies such as particles, films, or hydrogels, has been shown to fulfil most criteria necessary for its use as biomaterial. Further, eADF4(C16) particles have been shown to be well-suited for drug delivery. Here, a new method was established for particle production to reduce particle size and size distribution. Importantly, cellular uptake of these particles was shown to be poor in HeLa cells. Therefore, variants of eADF4(C16) with inversed net charge or incorporated cell penetrating peptides and receptor interacting motifs were tested, showing much better cellular uptake. Interestingly, uptake of all silk variant particles was mainly achieved by clathrin-mediated endocytosis.
منابع مشابه
Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.
The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric...
متن کاملSynthetic biology increases efficiency of Escherichia coli to produce Parawixia bistriata spider silk protein
Background Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. With synthetic biology it is possible to express recombinant spider silk proteins, which are characterized by a highly repetitive rich glycine and alanine sequence [1]. However, production of high molecular weight spider silk protein can be difficu...
متن کاملInterfacial rheological properties of recombinant spider-silk proteins.
Freestanding protein films are interesting for many applications ranging from microencapsulation to tissue engineering. Here, the authors use interfacial rheology to characterize the adsorption kinetics and the rheology of spider-silk films formed at an oil water interface. The high surface activity of the engineered spider-silk proteins results in a fast formation of highly stable films, which...
متن کاملEngineered spider silk protein-based composites for drug delivery.
Silk protein-based materials are promising materials for the delivery of drugs and other active ingredients, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) in combination with either a polyester (polycaprolactone) or a polyurethane (pellethane), and their physical properties are described. ...
متن کاملAir Filter Devices Including Nonwoven Meshes of Electrospun Recombinant Spider Silk Proteins
Based on the natural sequence of Araneus diadematus Fibroin 4 (ADF4), the recombinant spider silk protein eADF4(C16) has been engineered. This highly repetitive protein has a molecular weight of 48kDa and is soluble in different solvents (hexafluoroisopropanol (HFIP), formic acid and aqueous buffers). eADF4(C16) provides a high potential for various technical applications when processed into mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials science
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2015