Image Compression in Real-Time Multiprocessor Systems Using Divisive K-Means Clustering
نویسندگان
چکیده
In recent years, clustering became one of the fundamental methods of large dataset analysis. In particular, clustering is an important component of real-time image compression and exploitation algorithms, such as vector quantization, segmentation of SAR, EO/IR, and hyperspectral imagery, group tracking, and behavior pattern analysis. Thus, development of fast scalable real-time clustering algorithms is important to enable exploitation of imagery coming from surveillance and reconnaissance airborne platforms. Clustering methods are widely used in pattern recognition, data compression, data mining, but the problem of using them in real-time systems has not been a focus of most algorithm designers. In this paper, we describe a practical clustering procedure that is designed specifically for compression of 2D images and can satisfy stringent requirements of real-time onboard processing.
منابع مشابه
Detection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملAdvanced Web Image Retrieval Using Clustering Algorithms
In this paper we propose a novel methodology for Web Image retrieval system that takes an image as the input query and retrieves images based on image content. Content Based Image Retrieval is an approach for retrieving semantically-relevant images from an image store based on algorithmically-derived image features. We propose an algorithm to represent images using divisive and partitioned base...
متن کاملWeb Image Retrieval Using Clustering Approaches
Image retrieval system is an active area to propose a new approach to retrieve images from the large image database. In this concerned, we proposed an algorithm to represent images using divisive based and partitioned based clustering approaches. The HSV color component and Haar wavelet transform is used to extract image features. These features are taken to segment an image to obtain objects. ...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملOn the performance of bisecting K-means and PDDP
The problem this paper focuses on is the unsupervised clustering of a data-set. The dataset is given by the matrix [ ] N p N x x x M × R ∈ = ,..., , 2 1 , where each column of M, p i x R ∈ , is a single data-point. This is one of the more basic and common problems in fields like pattern analysis, data mining, document retrieval, image segmentation, decision making, etc. ([12, 13]). The specific...
متن کامل