Na pump isoforms in human erythroid progenitor cells and mature erythrocytes.

نویسندگان

  • Joseph F Hoffman
  • Amittha Wickrema
  • Olga Potapova
  • Mark Milanick
  • Douglas R Yingst
چکیده

This study is aimed at identifying the Na pump isoform composition of human erythroid precursor cells and mature human erythrocytes. We used purified and synchronously growing human erythroid progenitor cells cultured for 7-14 days. RNA was extracted from the progenitor cells on different days and analyzed by RT-PCR. The results showed that only the alpha1, alpha3, beta2, and beta3 subunit isoforms and the gamma modulator were present. Northern analysis of the erythroid progenitor cells again showed that beta2 but not beta1 or alpha2 isoforms were present. The erythroid cells display a unique beta subunit expression profile (called beta-profiling) in that they contain the message for the beta2 isoform but not beta1, whereas leukocytes and platelets are known to have the message for the beta1 but not for the beta2 isoform. This finding is taken to indicate that our preparations are essentially purely erythroid and free from white cell contamination. Western analysis of these cultured progenitor cells confirmed the presence of alpha1, alpha3, (no alpha2), beta2, beta3, and gamma together now with clear evidence that beta1 protein was also present at all stages. Western analysis of the Na pump from mature human erythrocyte ghosts, purified by ouabain column chromatography, has also shown that alpha1, alpha3, beta1, beta2, beta3, and gamma are present. Thus, the Na pump isoform composition of human erythroid precursor cells and mature erythrocytes contains the alpha1 and alpha3 isoforms of the alpha subunit, the beta1, beta2, and beta3 isoforms of the beta subunit, and the gamma modulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes.

Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1(-/-); Shi TS et al. J Clin Invest 103: 331, 1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1(-/-) mice...

متن کامل

Plasticity of Cells and Ex Vivo Production of Red Blood Cells

The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If transfusable RBCs could be produced abundantly from certain resources, it would be very useful. Our group has developed a method to produce enucleated RBCs efficiently from hematopoietic stem/progenitor cells present in umbilical cord blood. More recently, it was reported that enucleated RBCs could be abun...

متن کامل

MEIS1 regulates early erythroid and megakaryocytic cell fate.

MEIS1 is a transcription factor expressed in hematopoietic stem and progenitor cells and in mature megakaryocytes. This biphasic expression of MEIS1 suggests that the function of MEIS1 in stem cells is distinct from its function in lineage committed cells. Mouse models show that Meis1 is required for renewal of stem cells, but the function of MEIS1 in human hematopoietic progenitor cells has no...

متن کامل

The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells.

The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating fr...

متن کامل

Hematologic Diseases

Hematopoiesis is the formation of cellular components of the blood from a small population of pluripotential stem cells, which are formed in embryonic life and persist thereafter through self-regeneration. When stimulated by hematopoietic growth factors such as cytokines, these precursor cells give rise to progenitor cells committed to development along specific pathways. These progenitor cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 22  شماره 

صفحات  -

تاریخ انتشار 2002