Optimal Error Estimates for a Semi-Implicit Euler Scheme for Incompressible Fluids with Shear Dependent Viscosities

نویسندگان

  • Luigi C. Berselli
  • Lars Diening
  • Michael Ruzicka
چکیده

Certain rheological behavior of fluids in engineering sciences is modeled by power law ansatz with p ∈ (1, 2]. In the present paper a semi-implicit time discretization scheme for such fluids is proposed. The main result is the optimal O(k2) error estimate, where k is the time step size. This improves results in [L. Diening, A. Prohl, and M. Růžička, SIAM J. Numer. Anal., 44 (2006), pp. 1172–1190], which where suboptimal in terms of the order of convergence. Our results hold in three-dimensional domains (with periodic boundary conditions) for the range p ∈ (3/2, 2] and are uniform with respect to the degeneracy parameter δ ∈ [0, δ0] of the extra stress tensor. Additional regularity properties of the solution of the discrete problem are proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media

In this paper, we study the unconditional convergence and error estimates of a Galerkin-mixed FEM with the linearized semi-implicit Euler scheme for the equations of incompressible miscible flow in porous media. We prove that the optimal L2 error estimates hold without any time-step (convergence) conditions, while all previous works require certain time-step restrictions. Our theoretical result...

متن کامل

Semi-implicit Euler Scheme for Generalized Newtonian Fluids

Rheological behavior of certain non–Newtonian fluids in engineering sciences is often modeled by power law ansatzes with p ≤ 2. So far, existing numerical analysis for local strong solutions study a fully implicit time discretization and find only restricted ranges of admissible p’s for corresponding error estimates [9]; different nonlinear stabilization strategies which allow a corresponding e...

متن کامل

Error Analysis of Linearized Semi-implicit Galerkin Finite Element Methods for Nonlinear Parabolic Equations

This paper is concerned with the time-step condition of commonly-used linearized semi-implicit schemes for nonlinear parabolic PDEs with Galerkin finite element approximations. In particular, we study the time-dependent nonlinear Joule heating equations. We present optimal error estimates of the semi-implicit Euler scheme in both the L norm and the H norm without any time-step restriction. Theo...

متن کامل

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2009