Mitf Induction by RANKL Is Critical for Osteoclastogenesis
نویسندگان
چکیده
Microphthalmia-associated transcription factor (Mitf) regulates the development and function of several cell lineages, including osteoclasts. In this report, we identified a novel mechanism by which RANKL regulates osteoclastogenesis via induction of Mitf isoform E (Mitf-E). Both Mitf-A and Mitf-E are abundantly present in osteoclasts. Unlike Mitf-A, which is ubiquitously expressed and is present in similar amounts in macrophages and osteoclasts, Mitf-E is almost nondetectable in macrophages, but its expression is significantly up-regulated during osteoclastogenesis. In addition to their different expression profiles, the two isoforms are drastically different in their abilities to support osteoclastogenesis, despite sharing all known functional domains. Unlike Mitf-A, small amounts of Mitf-E are present in nuclear lysates unless chromatin is digested/sheared during the extraction. Based on these data, we propose a model in which Mitf-E is induced during osteoclastogenesis and is closely associated with chromatin to facilitate its interaction with target promoters; therefore, Mitf-E has a stronger osteoclastogenic activity. Mitf-A is a weaker osteoclastogenic factor, but activated Mitf-A alone is not sufficient to fully support osteoclastogenesis. Therefore, this receptor activator for nuclear factor-kappaB ligand (RANKL)-induced Mitf phenomenon seems to play an important role during osteoclastogenesis. Although the current theory indicates that Mitf and its binding partner Tfe3 are completely redundant in osteoclasts, using RNA interference, we demonstrated that Mitf has a distinct role from Tfe3. This study provides the first evidence that RANKL-induced Mitf is critical for osteoclastogenesis and Mitf is not completely redundant with Tfe3.
منابع مشابه
Enhancement of RANKL-induced MITF-E expression and osteoclastogenesis by TGF-β.
Microphthalmia-associated transcription factor (MITF) is a transcription factor that is expressed in limited types of cells, including osteoclasts, but the expression and role of MITF during osteoclastogenesis have not been fully elucidated. The expression of the MITF-E isoform but not that of the MITF-A isoform was induced in response to differentiation stimulation towards osteoclasts by recep...
متن کاملMafB negatively regulates RANKL-mediated osteoclast differentiation.
Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macro...
متن کاملHSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors.
The HSP90 (heat-shock protein 90) inhibitor 17-AAG (17-allylamino-demethoxygeldanamycin) increases osteoclast formation both in vitro and in vivo, an action that can enhance cancer invasion and growth in the bone microenvironment. The cellular mechanisms through which 17-AAG exerts this action are not understood. Thus we sought to clarify the actions of 17-AAG on osteoclasts and determine wheth...
متن کاملPIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts.
Cytokine signaling via various transcription factors regulates receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-mediated osteoclast differentiation from monocyte/macrophage lineage cells involved in propagation and resolution of inflammatory bone destruction. Protein inhibitor of activated STAT3 (PIAS3) was initially identified as a molecule that inhibits DNA binding of STAT3 and...
متن کاملTranscriptional induction of cyclooxygenase-2 in osteoclast precursors is involved in RANKL-induced osteoclastogenesis.
Regulation of osteoclast differentiation is key to understanding the pathogenesis and to developing treatments for bone diseases such as osteoporosis. To gain insight into the mechanism of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-specific induction of the osteoclast differentiation program, we took a suppression-subtractive hybridization screening approach to identify...
متن کامل