Removing non-stationary noise in spectrum sensing using matrix factorization

نویسندگان

  • Jan-Willem van Bloem
  • Roel Schiphorst
  • Cornelis H. Slump
چکیده

Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Classification of Remote Sensing Imagery With Non-negative Matrix Factorization

An unsupervised classification method provides the interpretation, feature extraction and endmember estimation for the remote sensing image data without any prior knowledge of the ground truth. We explore such method and construct an algorithm based on the non-negative matrix factorization (NMF). The use of the NMF is to match the non-negative property in sensing spectrum data. The data dimensi...

متن کامل

Non-stationary Noise Estimation Based on Non-negative Matrix Factorization

In this paper, we apply a non-negative matrix factorization (NMF) technique to propose a method of estimating noise occurring in non-stationary environments. In the proposed method, the basis matrix of the target noise is first obtained via NMF training. The noise basis is then applied to estimate an activation matrix of the target noise from the noisy signal. The proposed method is finally app...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Non-negative matrix factorization with linear constraints for single-channel speech enhancement

This paper investigates a non-negative matrix factorization (NMF)-based approach to the semi-supervised single-channel speech enhancement problem where only non-stationary additive noise signals are given. The proposed method relies on sinusoidal model of speech production which is integrated inside NMF framework using linear constraints on dictionary atoms. This method is further developed to ...

متن کامل

Study of Multiple Dictionaries in Exemplar-based Nmf for Speech Enhancement

Growing in importance, especially over the last years, speech enhancement has been an important research topic due to the fact that it is required in many applications in the daily life. Speech enhancement and noise reduction aim to improve the speech quality, intelligibility and overall perceptual clarity of a noisy signal by removing the unwanted noise using several techniques. The traditiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013