The Ehrhart Polynomial of the Birkhoff Polytope

نویسندگان

  • Matthias Beck
  • Dennis Pixton
چکیده

The n Birkhoff polytope is the set of all doubly stochastic n × n matrices, that is, those matrices with nonnegative real coefficients in which every row and column sums to one. A wide open problem concerns the volumes of these polytopes, which have been known for n ≤ 8. We present a new, complex-analytic way to compute the Ehrhart polynomial of the Birkhoff polytope, that is, the function counting the integer points in the dilated polytope. One reason to be interested in this counting function is that the leading term of the Ehrhart polynomial is—up to a trivial factor—the volume of the polytope. We implemented our methods in the form of a computer program, which yielded the Ehrhart polynomial (and hence the volume) of the ninth and the volume of the tenth Birkhoff polytope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generating function for all semi-magic squares and the volume of the Birkhoff polytope

We present a multivariate generating function for all n × n nonnegative integral matrices with all row and column sums equal to a positive integer t , the so called semi-magic squares. As a consequence we obtain formulas for all coefficients of the Ehrhart polynomial of the polytope Bn of n×n doubly-stochastic matrices, also known as the Birkhoff polytope. In particular we derive formulas for t...

متن کامل

Formulas for the Volumes of the Polytope of Doubly-stochastic Matrices and Its Faces

We provide an explicit combinatorial formula for the volume of the polytope of n× n doubly-stochastic matrices, also known as the Birkhoff polytope. We do this through the description of a generating function for all the lattice points of the closely related polytope of n × n real non-negative matrices with all row and column sums equal to an integer t. We can in fact recover similar formulas f...

متن کامل

Magic graphs and the faces of the Birkhoff polytope

ABSTRACT Magic labelings of graphs are studied in great detail by Stanley in [18] and [19], and Stewart in [20] and [21]. In this article, we construct and enumerate magic labelings of graphs using Hilbert bases of polyhedral cones and Ehrhart quasi-polynomials of polytopes. We define polytopes of magic labelings of graphs and digraphs. We give a description of the faces of the Birkhoff polytop...

متن کامل

Ehrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices

In Ehrhart theory, the h∗-vector of a rational polytope often provides insights into properties of the polytope that may be otherwise obscured. As an example, the Birkhoff polytope, also known as the polytope of real doubly-stochastic matrices, has a unimodal h∗-vector, but when even small modifications are made to the polytope, the same property can be very difficult to prove. In this paper, w...

متن کامل

Ehrhart polynomials of cyclic polytopes

Abstract. The Ehrhart polynomial of an integral convex polytope counts the number of lattice points in dilates of the polytope. In [1], the authors conjectured that for any cyclic polytope with integral parameters, the Ehrhart polynomial of it is equal to its volume plus the Ehrhart polynomial of its lower envelope and proved the case when the dimension d = 2. In our article, we prove the conje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2003