Squirmers with swirl: a model for Volvox swimming
نویسندگان
چکیده
Colonies of the green alga Volvox are spheres that swim through the beating of pairs of flagella on their surface somatic cells. The somatic cells themselves are mounted rigidly in a polymeric extracellular matrix, fixing the orientation of the flagella so that they beat approximately in a meridional plane, with axis of symmetry in the swimming direction, but with a roughly [Formula: see text] azimuthal offset which results in the eponymous rotation of the colonies about a body-fixed axis. Experiments on colonies of Volvox carteri held stationary on a micropipette show that the beating pattern takes the form of a symplectic metachronal wave (Brumley et al. Phys. Rev. Lett., vol. 109, 2012, 268102). Here we extend the Lighthill/Blake axisymmetric, Stokes-flow model of a free-swimming spherical squirmer (Lighthill Commun. Pure Appl. Maths, vol. 5, 1952, pp. 109-118; Blake J. Fluid Mech., vol. 46, 1971b, pp. 199-208) to include azimuthal swirl. The measured kinematics of the metachronal wave for 60 different colonies are used to calculate the coefficients in the eigenfunction expansions and hence predict the mean swimming speeds and rotation rates, proportional to the square of the beating amplitude, as functions of colony radius. As a test of the squirmer model, the results are compared with measurements (Drescher et al. Phys. Rev. Lett., vol. 102, 2009, 168101) of the mean swimming speeds and angular velocities of a different set of 220 colonies, also given as functions of colony radius. The predicted variation with radius is qualitatively correct, but the model underestimates both the mean swimming speed and the mean angular velocity unless the amplitude of the flagellar beat is taken to be larger than previously thought. The reasons for this discrepancy are discussed.
منابع مشابه
Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids
We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called "squirmer". The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and ...
متن کاملHydrodynamic interaction of microswimmers near a wall.
The hydrodynamics of an archetypal low-Reynolds number swimmer, called "squirmer," near a wall has been numerically studied. For a single squirmer, depending on the swimming mechanism, three different modes are distinguished: (a) the squirmer escaping from the wall, (b) the squirmer swimming along the wall at a constant distance and orientation angle, and (c) the squirmer swimming near the wall...
متن کاملVolvox Barberi, the Fastest Swimmer of the Volvocales (chlorophyceae)(1).
Volvox barberi W. Shaw is a volvocalean green alga composed of biflagellated cells. Vovocales with 16 cells or more form spherical colonies, and their largest members have germ-soma separation (all species in the genus Volvox). V. barberi is the largest Volvox species recorded in terms of cell number (10,000-50,000 cells) and has the highest somatic to reproductive cell ratio (S/R). Since they ...
متن کاملVolvox Barberi, the Fastest Swimmer of the Volvocales (chlorophyceae)
Volvox barberi W. Shaw is a volvocalean green alga composed of biflagellated cells. Vovocales with 16 cells or more form spherical colonies, and their largest members have germ-soma separation (all species in the genus Volvox). V. barberi is the largest Volvox species recorded in terms of cell number (10,000–50,000 cells) and has the highest somatic to reproductive cell ratio (S ⁄R). Since they...
متن کاملDancing volvox: hydrodynamic bound states of swimming algae.
The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they "waltz" or "minuet" around each other. A surfac...
متن کامل