A ug 2 01 0 Chiral metamaterials : retrieval of the effective parameters with and without substrate
نویسنده
چکیده
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate. © 2010 Optical Society of America OCIS codes: (160.3918) Metamaterials; (160.1585) Chiral media; (160.4760) Optical properties References and links 1. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353-1355 (2004). 2. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695-706 (2003). 3. Cesar Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005). 4. S. Tretyakov, A. Sihvola, and L. Jylha, Backward-wave regime and negative refraction in chiral composites, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005). 5. V. Yannopapas, ”Negative index of refraction in artificial chiral materials,” J. Phys.: Condens. Matter 18, 68836890 (2006). 6. V. M. Agranovich, Y. N. Gartstein, and A. A. Zakhidov, ”Negative refraction in gyrotropic media,” Phys. Rev. B 73, 045114 (2006). 7. C. Zhang and T. J. Cui, “Negative reflections of electromagnetic waves in a strong chiral medium,” Appl. Phys. Lett. 91, 194101 (2007). 8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513-1515 (2009). 9. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, Th. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). 10. J. Zhou, J. Dong, B. Wang, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104(R) (2009). 11. J. Dong, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17, 14172-14179 (2009). 12. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93, 191911 (2008). 13. E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009). 14. L. Jelinek, R. Marquěs, F. Mesa, and J. D. Baena, “Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media,” Phys. Rev. B 77, 205110 (2008). 15. B. Wang, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009). 16. V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” Opt. Lett. 34, 632-634 (2009). 17. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). 18. E. Plum, V. A. Fedotov, A. S. Schwanecke, Y. Chen, and N. I. Zheludev, “ Giant optical gyrotropy due to electromagnetic coupling ,” Appl. Phys. Lett. 90, 223113 (2007). 19. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005). 20. M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett., 35, 1593-1595 (2010). 21. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501-1503 (2009). 22. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856-858 (2007). 23. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). 24. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). 25. Th. Koschny,M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004). 26. Th. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). 27. D. R. Smith, D. C. Vier, Th. Koschny and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). 28. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009). 29. B. Wang, J. Zhou, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11, 114003 (2009). 30. D. H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express 16, 11822-11829 (2008). 31. I. V. Lindell et al., Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston · London, 1994). 32. A. Serdyukov et al., Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science Publishers, Amsterdam, 2001). 33. Some people (see, for instance, A. Lakhtakia et al., “Reflection of plane waves at planar achiral-chiral interfaces: independence of the reflected polarization state from the incident polarization state,” J. Opt. Soc. Am. A 7, 1654 (1990).) use the Drude-Born-Fedorov relations: D= ε(B+β∇×E), B= μ(H+β∇×H), where β characterizes the strength of the chirality. They can be brought to the same form. The transformations between the parameters of the two systems are given in Ref. 26. 34. CST MICROWAVE STUDIO (CST MWS) is a specialist tool for the 3D EM simulation of high frequency components, http://www.cst.com/Content/Products/MWS/Overview.aspx. 35. P. Markoš and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008). 36. R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive Casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009). 37. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,“ Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999). 38. E. U. Condon,“Theories of optical rotatory power,” Rev. Mod. Phys. 9, 432-457 (1937). 39. L.D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (2nd ed., Pergamon Press, Oxford, 1984), §104, p.362-367.
منابع مشابه
Chiral metamaterials: retrieval of the effective parameters with and without substrate.
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we...
متن کاملWave propagation retrieval method for chiral metamaterials.
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence of artificial branches of the refractive index and simplicity in implementation. We prove the validit...
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملMaterial parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design.
A chiral optical negative-index metamaterial design of doubly periodic construction for the near-infrared spectrum is presented. The chirality is realized by incorporating sub-wavelength planar silver-aluminasilver resonators and arranging them in a left-handed helical (i.e., stair-step) configuration as a wave propagates through the metamaterial. An effective material parameter retrieval proce...
متن کامل0 v 1 1 8 A ug 1 99 9 RUB - TPII - 09 / 99 PNU - NTG - 01 / 99 ∆ S = 1 , 2 Effective Weak Chiral Lagrangian from the Instanton Vacuum
We study the effective weak chiral Lagrangian within the framework of the instanton vacuum. We incorporate the ∆S = 1, 2 effective weak Hamiltonian into the effective low-energy QCD partition function defining the chiral symmetric quark-Goldstone boson interactions with the momentum-dependent dynamical quark mass. Employing the derivative expansion, we derive the corresponding weak effective La...
متن کامل