Design rules for nanogap-based hydrogen gas sensors.

نویسندگان

  • Junmin Lee
  • Wooyoung Shim
  • Jin-Seo Noh
  • Wooyoung Lee
چکیده

Nanoscale gaps, which enable many research applications in fields such as chemical sensors, single-electron transistors, and molecular switching devices, have been extensively investigated over the past decade and have witnessed the evolution of related technologies. Importantly, nanoscale gaps employed in hydrogen-gas (H(2)) sensors have been used to reversibly detect H(2) in an On-Off manner, and function as platforms for enhancing sensing performance. Herein, we review recent advances in nanogap design for H(2) sensors and deal with various strategies to create these gaps, including fracture generation by H(2) exposure, deposition onto prestructured patterns, island formation on a surface, artificial manipulation methods, methods using hybrid materials, and recent approaches using elastomeric substrates. Furthermore, this review discusses a new nanogap design that advances sensing capabilities in order to meet the diverse needs of academia and industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor

Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achi...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the char...

متن کامل

Design of Oil Refineries Hydrogen Network Using Process Integration Principles

This paper describes the application of process integration principles to the design of oil refineries hydrogen network. In this regard, a design hierarchy as well as heuristics and required guidelines are proposed. The recommended rules compensate lack of procedure to the design and make the design process easier. The guiding principles of the design are based upon pinch technology and ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2012