A combinatorial model for the Macdonald polynomials.

نویسنده

  • J Haglund
چکیده

We introduce a polynomial C(mu)[Z; q, t], depending on a set of variables Z = z(1), z(2),..., a partition mu, and two extra parameters q, t. The definition of C(mu) involves a pair of statistics (maj(sigma, mu), inv(sigma, mu)) on words sigma of positive integers, and the coefficients of the z(i) are manifestly in N[q,t]. We conjecture that C(mu)[Z; q, t] is none other than the modified Macdonald polynomial H(mu)[Z; q, t]. We further introduce a general family of polynomials F(T)[Z; q, S], where T is an arbitrary set of squares in the first quadrant of the xy plane, and S is an arbitrary subset of T. The coefficients of the F(T)[Z; q, S] are in N[q], and C(mu)[Z; q, t] is a sum of certain F(T)[Z; q, S] times nonnegative powers of t. We prove F(T)[Z; q, S] is symmetric in the z(i) and satisfies other properties consistent with the conjecture. We also show how the coefficient of a monomial in F(T)[Z; q, S] can be expressed recursively. maple calculations indicate the F(T)[Z; q, S] are Schur-positive, and we present a combinatorial conjecture for their Schur coefficients when the set T is a partition with at most three columns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combinatorial Formula for Non-symmetric Macdonald Polynomials

We give a combinatorial formula for the non-symmetric Macdonald polynomials Eμ(x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials Jμ(x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

2 8 Ja n 20 06 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

2 9 N ov 2 00 6 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

1 2 Fe b 20 07 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.

Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 46  شماره 

صفحات  -

تاریخ انتشار 2004