On the Frontline: Tracking Ocean Acidification in an Alaskan Shellfish Hatchery
نویسندگان
چکیده
The invasion of anthropogenic carbon dioxide (CO2) into the ocean is shifting the marine carbonate system such that saturation states of calcium carbonate (CaCO3) minerals are decreasing, and this is having a detrimental impact on early life stages of select shellfish species. The global, secular decrease in CaCO3 saturation states is occurring on top of a backdrop of large natural variability in coastal settings; progressively shifting the envelope of variability and leading to longer and more frequent exposure to adverse conditions. This is a great concern in the State of Alaska, a high-latitude setting vulnerable to rapid changes in the marine carbonate system, where an emerging shellfish industry plans major growth over the coming decades. Currently, the Alutiiq Pride Shellfish Hatchery (APSH) in Seward, Alaska is the only hatchery in the state, and produces many shellfish species with early life stages known to be sensitive to low CaCO3 saturation states. Here we present the first land-based OA measurements made in an Alaskan shellfish hatchery, and detail the trends in the saturation state of aragonite (Ωarag), the more soluble form of CaCO3, over a 10-month period in the APSH seawater supply. These data indicate the largest changes are on the seasonal time scale, with extended periods of sub-optimal Ωarag levels (Ωarag < 1.5) in winter and autumn associated with elevated water column respiration and short-lived runoff events, respectively. The data pinpoint a 5-month window of reprieve with favorable Ωarag conditions above the sub-optimal Ωarag threshold, which under predicted upper-bound CO2 emissions trajectories is estimated to close by 2040. To date, many species in production at APSH remain untested in their response to OA, and the data presented here establish the current conditions at APSH as well as provide a framework for hatchery-based measurements in Alaska. The current and expected conditions seen at APSH are essential to consider for this developing Alaskan industry.
منابع مشابه
Can Shellfish Adapt to Ocean Acidification?
In the Pacific Northwest, oyster aficionados have likely tasted Chris Langdon’s scientific handiwork. Since 1996, his Molluscan Broodstock Program at Oregon State University has been breeding plump, fast-growing, and hardy oysters as stock for the $250 million West Coast oyster industry. But in the past several years, the program has taken on an additional goal: identifying oysters that are mor...
متن کاملCommunity-Level Actions that Can Address Ocean Acidification
Ocean acidification has led to detectable changes in seawater chemistry around the world, which are associated with reduced growth and survival of many species. Acute ocean acidification “events” in the Pacific Northwest United States have jeopardized the $270 million, 3200 jobs/year shellfish aquaculture industry in Washington State, and this has contributed to the state’s broad-based, legisla...
متن کاملBiomarker response of climate change-induced ocean acidification and hypercapnia studies on brachyurian crab Portunus pelagicus
A laboratory level microcosm analysis of the impacts of ocean acidification on the environmental stress biomarkers in Portunus pelagicus (Linneaus 1758)exposed to a series of pH regimes expected in the year 2100 (pH 7.5 and 7.0) and leakage from a sub-seabed carbon dioxide storage site (pH 6.5 - 5.5) was carried out. Levels of the antioxidant enzyme catalase, the phase II detoxificatio...
متن کاملImpacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae: implications for shellfish aquaculture
متن کامل
Ocean acidification and disease: How will a changing climate impact Vibrio tubiashii growth and pathogenicity to Pacific oyster larvae?
Ocean acidification and disease: How will a changing climate impact Vibrio tubiashii growth and pathogenicity to Pacific oyster larvae? Elene Marie Dorfmeier Chair of Supervisory Committee: Carolyn S. Friedman, Associate Professor School of Aquatic and Fishery Sciences Vibrio tubiashii (Vt) is a causative agent of vibriosis in molluscan bivalves. Recent re-emergence of vibriosis in economically...
متن کامل