The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials

نویسندگان

  • Hanhui Xie
  • Heng Wang
  • Chenguang Fu
  • Yintu Liu
  • G. Jeffrey Snyder
  • Xinbing Zhao
  • Tiejun Zhu
چکیده

The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0 × 10(19) to 2.3 × 10(21) cm(-3) by changing Sb dopant content. The optimized carrier concentration nH ≈ 3-4 × 10(20) cm(-2) results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials

Band structure parameters, such as the band gap, can be estimated using electrical transport properties. In many thermoelectric studies, the temperature dependent Seebeck coefficient is used to estimate the band gap using the Goldsmid–Sharp band gap formula: Eg 1⁄4 2eSmaxTmax. This important, fundamental parameter is useful for characterizing and understanding any semiconductor, but it is parti...

متن کامل

Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds

We investigated the thermoelectric properties of the ternary half-Heusler compound, TiNiSn, when introducing C and N. The addition of C or N to TiNiSn leads to an enhanced power factor and a decreasing lattice thermal conductivity by point defect phonon scattering. The thermoelectric performances of TiNiSn alloys are significantly improved by adding 1 at. % TiN, TiC, and figure of merit (ZT) va...

متن کامل

Enhancing the Figure of Merit of Heavy‐Band Thermoelectric Materials Through Hierarchical Phonon Scattering

Hierarchical scattering is suggested as an effective strategy to enhance the figure of merit zT of heavy-band thermoelectric materials. Heavy-band FeNbSb half-Heusler system with intrinsically low carrier mean free path is demonstrated as a paradigm. An enhanced zT of 1.34 is obtained at 1150 K for the Fe1.05Nb0.75Ti0.25Sb compound with intentionally designed hierarchical scattering centers.

متن کامل

Thermal conductivity of half-Heusler compounds from first-principles calculations

conductivity of half-Heusler compounds from first-principles calculations. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We demonstrate successful application of...

متن کامل

Synthesis and Thermoelectric Properties of Ni-Doped ZrCoSb Half-Heusler Compounds

The Ni-doped ZrCo1−xNixSb half-Heusler compounds were prepared by arc-melting and spark plasma sintering technology. X-ray diffraction analysis results showed that all samples were crystallized in a half-Heusler phase. Thermoelectric properties of ZrCo1−xNixSb compounds were measured from room temperature to 850 K. The electrical conductivity and the absolute value of Seebeck coefficient increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014