Inhibition of rac1 reduces PDGF-induced reactive oxygen species and proliferation in vascular smooth muscle cells.

نویسندگان

  • G. Kong
  • S. Lee
  • K. S. Kim
چکیده

In vascular smooth muscle cells, reactive oxygen species (ROS) were known to mediate platelet-derived growth factor (PDGF)-induced cell proliferation and NADH/NADPH oxidase is the major source of ROS. NADH/NADPH oxidase is controlled by rac1 in non-phagocytic cells. In this study, we examined whether the inhibition of rac1 by adenoviral-mediated gene transfer of a dominant negative rac1 gene product (Ad.N17rac1) could reduce the proliferation of rat aortic vascular smooth muscle cells (RASMC) stimulated by PDGF via decreasing intracellular ROS. RASMC were stimulated by PDGF (80 ng/mL) with or without N-acetylcysteine 1 mM or infected with 100 mutiplicity of infection of Ad.N17rac1. Intracellular ROS levels were measured at 12 hr using carboxyl-2', 7'-dichlorodihydrofluorescein diacetate confocal microscopy. At 72 hr, cellular proliferation was evaluated by cell number counting and XTT assay. Compared with control, ROS levels were increased by 2-folds by PDGF. NAC and Ad.N17rac1 inhibited PDGF-induced increase of ROS by 77% and 65%, respectively. Cell number was increased by PDGF by 1.6-folds compared with control. NAC and Ad.N17rac1 inhibited PDGF-induced cellular growth by 45% and 87%, respectively. XTT assay also showed similar results. We concluded that inhibition of rac1 in RASMCs could reduce intracellular ROS levels and cellular proliferation induced by PDGF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Important role for Rac1 in regulating reactive oxygen species generation and pulmonary arterial smooth muscle cell growth.

Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) ...

متن کامل

Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia.

OBJECTIVE Reactive oxygen species are important mediators for platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells, whereas excess reactive oxygen species-induced oxidative stress contributes to the development and progression of vascular diseases, such as atherosclerosis. Activation of the redox-sensitive transcription factor, nuclear factor erythroid 2-related facto...

متن کامل

Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1.

Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent c...

متن کامل

8-Hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation.

8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative stress, has been recently rediscovered to inhibit Rac1 in neutrophils and macrophages, thereby inhibiting Rac1-linked functions of these cells, including reactive oxygen species production through NADPH oxidase activation, phagocytosis, chemotaxis, and cytokine release. In vascular smooth muscle cells (VSMCs), reactive oxygen species al...

متن کامل

Evodiamine inhibits PDGF-BB-induced proliferation of rat vascular smooth muscle cells through the suppression of cell cycle progression and oxidative stress

Vascular smooth muscle cell (VSMC) proliferation is a key event in the development of in‑stent restenosis. Evodiamine is an indole alkaloid extracted from the Chinese medicine, evodia, and has been shown to inhibit tumor cell proliferation and protect the cardiovascular system. However, whether evodiamine affects VSMC proliferation remains to be elucidated. Therefore, the present study examined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Korean Medical Science

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2001