BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana
نویسندگان
چکیده
BRCA1 is a well-known tumor suppressor protein in mammals, involved in multiple cellular processes such as DNA repair, chromosome segregation and chromatin remodeling. Interestingly, homologs of BRCA1 and several of its complex partners are also found in plants. As the respective mutants are viable, in contrast to mammalian mutants, detailed analyses of their biological role is possible. Here we demonstrate that the model plant Arabidopsis thaliana harbors two homologs of the mammalian BRCA1 interaction partner BRCC36, AtBRCC36A and AtBRCC36B. Mutants of both genes as well as the double mutants are fully fertile and show no defects in development. We were able to show that mutation of one of the homologs, AtBRCC36A, leads to a severe defect in intra- and interchromosomal homologous recombination (HR). A HR defect is also apparent in Atbrca1 mutants. As the Atbrcc36a/Atbrca1 double mutant behaves like the single mutants of AtBRCA1 and AtBRCC36A both proteins seem to be involved in a common pathway in the regulation of HR. AtBRCC36 is also epistatic to AtBRCA1 in DNA crosslink repair. Upon genotoxic stress, AtBRCC36A is transferred into the nucleus.
منابع مشابه
A homologue of the breast cancer-associated gene BARD1 is involved in DNA repair in plants.
hBRCA1 and hBARD1 are tumor suppressor proteins that are involved as heterodimer via ubiquitinylation in many cellular processes, such as DNA repair. Loss of BRCA1 or BARD1 results in early embryonic lethality and chromosomal instability. The Arabidopsis genome carries a BRCA1 homologue, and we were able to identify a BARD1 homologue. AtBRCA1 and the putative AtBARD1 protein are able to interac...
متن کاملHomologs of Breast Cancer Genes in Plants
Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and char...
متن کاملIsolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملThe Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملRAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana.
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of...
متن کامل