Deep Generalized Canonical Correlation Analysis
نویسندگان
چکیده
We present Deep Generalized Canonical Correlation Analysis (DGCCA) – a method for learning nonlinear transformations of arbitrarily many views of data, such that the resulting transformations are maximally informative of each other. While methods for nonlinear two-view representation learning (Deep CCA, (Andrew et al., 2013)) and linear many-view representation learning (Generalized CCA (Horst, 1961)) exist, DGCCA is the first CCA-style multiview representation learning technique that combines the flexibility of nonlinear (deep) representation learning with the statistical power of incorporating information from many independent sources, or views. We present the DGCCA formulation as well as an efficient stochastic optimization algorithm for solving it. We learn DGCCA representations on two distinct datasets for three downstream tasks: phonetic transcription from acoustic and articulatory measurements, and recommending hashtags and friends on a dataset of Twitter users. We find that DGCCA representations soundly beat existing methods at phonetic transcription and hashtag recommendation, and in general perform no worse than standard linear many-view techniques.
منابع مشابه
The RGCCA package for Regularized/Sparse Generalized Canonical Correlation Analysis
2 Multiblock data analysis with the RGCCA package 1 2.1 Regularized Generalized Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Variable selection in RGCCA: SGCCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Higher stage block components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Implementatio...
متن کاملMultiway Regularized Generalized Canonical Correlation Analysis
Regularized Generalized Canonical Correlation Analysis (RGCCA) is currently geared for the analysis two-way data matrix. In this paper, multiway RGCCA (MGCCA) extends RGCCA to the multiway data configuration. More specifically, MGCCA aims at studying the complex relationships between a set of three-way data table.
متن کاملRegularized Generalized Canonical Correlation Analysis Extended to Symbolic Data
Regularized Generalized Canonical Correlation Analysis (RGCCA) is a component-based approach which aims at studying the relationship between several blocks of numerical variables. In this paper we propose a method called Symbolic Generalized Canonical Correlation Analysis (Symbolic GCCA) that extends RGCCA to symbolic data. It is a versatile tool for multi-block data analysis that can deal with...
متن کاملOn Generalized Canonical Correlation Analysis
In generalized canonical correlation analysis several sets of variables are analyzed simultaneously. This makes the method suited for the analysis of various types of data. For example, in marketing research, subjects may be asked to rate a set of objects on a set of attributes. For each individual, a data matrix can then be constructed where the objects are represented row-wise and the attribu...
متن کاملKernel Generalized Canonical Correlation Analysis
A classical problem in statistics is to study relationships between several blocks of variables. The goal is to find variables of one block directly related to variables of other blocks. The Regularized Generalized Canonical Correlation Analysis (RGCCA) is a very attractive framework to study such a kind of relationships between blocks. However, RGCCA captures linear relations between blocks an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.02519 شماره
صفحات -
تاریخ انتشار 2017