A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.
نویسندگان
چکیده
Specific induction of the copper resistance operon (cop) promoter from Pseudomonas syringae was measured by beta-galactosidase production from a cop promoter-lacZ fusion. Induction of the cop promoter in P. syringae pv. syringae required trans-acting factors from copper resistance plasmid pPT23D, from which cop was originally cloned. Tn5 mutagenesis of pPT23D was used to localize two complementation groups immediately downstream from copABCD. Cloning and sequencing of the DNA in this region revealed two genes, copR and copS, expressed in the same orientation as the cop operon but from a separate constitutive promoter. The amino acid sequence deduced from these genes showed distinct similarities to known two-component regulatory systems, including PhoB-PhoR and OmpR-EnvZ. In addition, CopR showed strong similarity to copper resistance activator protein PcoR from Escherichia coli. Functional chromosomal homologs to copRS activated the cop promoter, in a copper-inducible manner, in copper-resistant or -sensitive strains of P. syringae pv. tomato and other Pseudomonas species. This implies that copper-inducible gene regulation is associated with a common chromosomally encoded function, as well as plasmid-borne copper resistance, in Pseudomonas spp.
منابع مشابه
Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12.
Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-bor...
متن کاملCopper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon.
Copper resistance in Pseudomonas syringae carrying the copABCD operon is associated with accumulation of copper in the periplasm and outer membrane, apparently as a function of the copper-binding activities of the copABC gene products. However, no specific function for copD has been determined. In this study, P. syringae cells containing copCD or copBCD cloned behind the lac promoter were hyper...
متن کاملAccumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads.
Copper-resistant strains of Pseudomonas syringae carrying the cop operon produce periplasmic copper-binding proteins, and this sequestration outside the cytoplasm has been proposed as a resistance mechanism. In this study, strain PS61 of P. syringae carrying the cloned cop operon accumulated more total cellular copper than without the operon. Several other copper-resistant pseudomonads with hom...
متن کاملCopper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins.
Copper-resistant strains of Pseudomonas syringae pathovar tomato accumulate copper and develop blue colonies on copper-containing media. Three of the protein products of the copper-resistance operon (cop) were characterized to provide an understanding of the copper-resistance mechanism and its relationship to copper accumulation. The Cop proteins, CopA (72 kDa), CopB (39 kDa), and CopC (12 kDa)...
متن کاملCopper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae.
Plant-associated pseudomonads are commonly exposed to copper bactericides, which are applied to reduce the disease incidence caused by these bacteria. Consequently, many of these bacteria have acquired resistance or tolerance to copper salts. We recently conducted a survey of 37 copper-resistant (Cur) Pseudomonas spp., including P. cepacia, P. fluorescens, P. syringae, and P. viridiflava, and f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 175 6 شماره
صفحات -
تاریخ انتشار 1993