Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation
نویسندگان
چکیده
Starch breakdown in leaves at night is tightly matched to the duration of the dark period, but the mechanism by which this regulation is achieved is unknown. In Arabidopsis chloroplasts, β-amylase BAM3 hydrolyses transitory starch, producing maltose and residual maltotriose. The aim of the current research was to investigate the regulatory and kinetic properties of BAM3. The BAM3 protein was expressed in Escherichia coli and first assayed using a model substrate. Enzyme activity was stimulated by treatment with dithiothreitol and was increased 40% by 2-10 μM Ca2+ but did not require Mg2+. In order to investigate substrate specificity and possible regulatory effects of glucans, we developed a GC-MS method to assay reaction products. BAM3 readily hydrolysed maltohexaose with a Km of 1.7 mM and Kcat of 4300 s-1 but activity was 3.4-fold lower with maltopentaose and was negligible with maltotetraose. With maltohexaose or amylopectin as substrates and using [UL-13C12]maltose in an isotopic dilution method, we discovered that BAM3 activity is inhibited by maltotriose at physiological (mM) concentrations, but not by maltose. In contrast, the extracellular β-amylase of barley is only weakly inhibited by maltotriose. Our results may explain the impaired starch breakdown in maltotriose-accumulating mutants such as dpe1 which lacks the chloroplast disproportionating enzyme (DPE1) metabolising maltotriose to glucose. We hypothesise that the rate of starch breakdown in leaves can be regulated by inhibition of BAM3 by maltotriose, the concentration of which is determined by DPE, which is in turn influenced by the stromal concentration of glucose. Since the plastid glucose transporter pGlcT catalyses facilitated diffusion between stroma and cytosol, changes in consumption of glucose in the cytosol are expected to lead to concomitant changes in plastid glucose and maltotriose, and hence compensatory changes in BAM3 activity.
منابع مشابه
b-Amylase1 and b-Amylase3 Are Plastidic Starch Hydrolases in Arabidopsis That Seem to Be Adapted for Different Thermal, pH, and Stress Conditions1[W][OPEN]
Starch degradation in chloroplasts requires b-amylase (BAM) activity, which is encoded by a multigene family. Of nine Arabidopsis (Arabidopsis thaliana) BAM genes, six encode plastidic enzymes, but only four of these are catalytically active. In vegetative plants, BAM1 acts during the day in guard cells, whereas BAM3 is the dominant activity in mesophyll cells at night. Plastidic BAMs have been...
متن کاملBlocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation
In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose exces...
متن کاملFeedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate.
Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced ove...
متن کاملbeta-Maltose is the metabolically active anomer of maltose during transitory starch degradation.
Maltose is the major form of carbon exported from the chloroplast at night as a result of transitory starch breakdown. Maltose exists as an alpha- or beta-anomer. We developed an enzymatic technique for distinguishing between the two anomers of maltose and tested the accuracy and specificity of this technique using beta-maltose liberated from maltoheptose by beta-amylase. This technique was use...
متن کاملFeedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate1[W][OPEN]
Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017