Analysis of System Dynamic Influences in Robotic Actuators with Variable Stiffness
نویسندگان
چکیده
In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.
منابع مشابه
Mechanical Influences on the Design of Actuators with Variable Stiffness
In the 1990s compliant joint actuation was introduced to robotics with the Series Elastic Actuator [1] and the Mechanical Impedance Adjuster [2]. Such concepts provide safer human-robot interaction, can store energy and decrease force control effort [1]. In the following decades, energy efficient actuation with such concepts had high impact in mobile applications such as bipedal robots, since t...
متن کاملDesign Characteristics and Dynamic Modeling of a Cooperative Dual-Arm- Lock Manipulator
Recent developments in the area of smart structures indicate that variable geometry / stiffness truss network is of fundamental importance in designing smart transformable structures and systems for space applications. This paper presents the conceptual design and dynamic modeling of a cooperative re-configurabel dual-arm robotic structure called Dual-Arm Cam-Lock Manipulator. The Manipulator i...
متن کاملDesign Characteristics and Dynamic Modeling of a Cooperative Dual-Arm- Lock Manipulator
Recent developments in the area of smart structures indicate that variable geometry / stiffness truss network is of fundamental importance in designing smart transformable structures and systems for space applications. This paper presents the conceptual design and dynamic modeling of a cooperative re-configurabel dual-arm robotic structure called Dual-Arm Cam-Lock Manipulator. The Manipulator i...
متن کاملStiffness Modulation of A1-DOF Robotic Manipulator with Antagonistic Actuators
-Stiffness modulation scheme for a robotic driving system with redundant actuation was investigated in this paper. The dynamic and the stiffness models of a simple system having one link and two prismatic actuators were derived and employed for computational simulations of dynamic response to an initial disturbance. Several combinations with different types of elastic elements were applied to t...
متن کاملGDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers
V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...
متن کامل