Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers

نویسندگان

  • Harold Fredricksen
  • Melvin M. Sweet
چکیده

We give new lower bounds for the Schur numbers S(6) and S(7). This will imply new lower bounds for the Multicolor Ramsey Numbers R6(3) and R7(3). We also make several observations concerning symmetric sumfree partitions into 5 sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers

For k ≥ 5, we establish new lower bounds on the Schur numbers S(k) and on the k-color Ramsey numbers of K3. For integers m and n, let [m,n] denote the set {i |m ≤ i ≤ n}. A set S of integers is called sum-free if i, j ∈ S implies i + j 6∈ S, where we allow i = j. The Schur function S(k) is defined for all positive integers as the maximum n such that [1, n] can be partitioned into k sum-free set...

متن کامل

Bottom Schur Functions

We give a basis for the space spanned by the sum ŝλ of the lowest degree terms in the expansion of the Schur symmetric functions sλ in terms of the power sum symmetric functions pμ, where deg(pi) = 1. These lowest degree terms correspond to minimal border strip tableaux of λ. The dimension of the space spanned by ŝλ, where λ is a partition of n, is equal to the number of partitions of n into pa...

متن کامل

One-dimensional optimal bounded-shape partitions for Schur convex sum objective functions

Consider the problem of partitioning n nonnegative numbers into p parts, where part i can be assigned ni numbers with ni lying in a given range. The goal is to maximize a Schur convex function F whose i th argument is the sum of numbers assigned to part i . The shape of a partition is the vector consisting of the sizes of its parts, further, a shape (without referring to a particular partition)...

متن کامل

N ov 2 00 3 BOTTOM SCHUR FUNCTIONS

We give a basis for the space spanned by the sumˆs λ of the lowest degree terms in the expansion of the Schur symmetric functions s λ in terms of the power sum symmetric functions p µ , where deg(p i) = 1. These lowest degree terms correspond to minimal border strip tableaux of λ. The dimension of the space spanned byˆs λ , where λ is a partition of n, is equal to the number of partitions of n ...

متن کامل

Elementary Proof of MacMahon’s Conjecture

Major Percy A. MacMahon’s first paper on plane partitions [4] included a conjectured generating function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews and Ian Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000