IPET and FETR: Experimental Approach for Studying Molecular Structure Dynamics by Cryo-Electron Tomography of a Single-Molecule Structure
نویسندگان
چکیده
The dynamic personalities and structural heterogeneity of proteins are essential for proper functioning. Structural determination of dynamic/heterogeneous proteins is limited by conventional approaches of X-ray and electron microscopy (EM) of single-particle reconstruction that require an average from thousands to millions different molecules. Cryo-electron tomography (cryoET) is an approach to determine three-dimensional (3D) reconstruction of a single and unique biological object such as bacteria and cells, by imaging the object from a series of tilting angles. However, cconventional reconstruction methods use large-size whole-micrographs that are limited by reconstruction resolution (lower than 20 Å), especially for small and low-symmetric molecule (<400 kDa). In this study, we demonstrated the adverse effects from image distortion and the measuring tilt-errors (including tilt-axis and tilt-angle errors) both play a major role in limiting the reconstruction resolution. Therefore, we developed a "focused electron tomography reconstruction" (FETR) algorithm to improve the resolution by decreasing the reconstructing image size so that it contains only a single-instance protein. FETR can tolerate certain levels of image-distortion and measuring tilt-errors, and can also precisely determine the translational parameters via an iterative refinement process that contains a series of automatically generated dynamic filters and masks. To describe this method, a set of simulated cryoET images was employed; to validate this approach, the real experimental images from negative-staining and cryoET were used. Since this approach can obtain the structure of a single-instance molecule/particle, we named it individual-particle electron tomography (IPET) as a new robust strategy/approach that does not require a pre-given initial model, class averaging of multiple molecules or an extended ordered lattice, but can tolerate small tilt-errors for high-resolution single "snapshot" molecule structure determination. Thus, FETR/IPET provides a completely new opportunity for a single-molecule structure determination, and could be used to study the dynamic character and equilibrium fluctuation of macromolecules.
منابع مشابه
3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation ...
متن کاملCorrigendum: 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography.
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation ...
متن کاملHigh-Resolution Single-Molecule Structure Revealed by Electron Microscopy and Individual Particle Electron Tomography
A single, unique structure of protein determined by X-ray crystal is often used for studies in structure–function relationships. However, the protein is naturally dynamic and fluctuation in solution, the single unique structure is insufficient to illuminate the dynamic character and “personalities” [1,2]. Other than a theoretical calculation approach, such as molecular dynamics simulation is ab...
متن کاملSingle-molecule imaging on living bacterial cell surface by high-speed AFM.
Advances in microscopy have contributed to many biologic discoveries. Electron microscopic techniques such as cryo-electron tomography are remarkable tools for imaging the interiors of bacterial cells in the near-native state, whereas optical microscopic techniques such as fluorescence imaging are useful for following the dynamics of specific single molecules in living cells. Neither technique,...
متن کامل"Current biotechnological approaches for studying G protein coupled receptor structure, function and signaling".
Aims & Scope: G-protein -coupled receptors (GPCRs) are the largest class of cell-surface receptors and mediate most of our physiological responses to hormones, neurotransmitters, as well as being responsible for vision, olfaction and taste. They carry out a multitude of tasks in the central nervous system (CNS) and the periphery. Numerous diseases and disorders have been linked to mutations and...
متن کامل