On Asymptotic Speed of Solutions to Level-Set Mean Curvature Flow Equations with Driving and Source Terms

نویسندگان

  • Yoshikazu Giga
  • Hiroyoshi Mitake
  • Hung V. Tran
چکیده

We investigate a model equation in the crystal growth, which is described by a level-set mean curvature flow equation with driving and source terms. We establish the well-posedness of solutions, and study the asymptotic speed. Interestingly, a new type of nonlinear phenomena in terms of asymptotic speed of solutions appears, which is very sensitive to the shapes of source terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns

Analytical gas-permeation models for predicting the separation process across  membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of  membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...

متن کامل

On the asymptotic spectrum of the reduced volume in cosmological solutions of the Einstein equations

Say Σ is a compact three-manifold with non-positive Yamabe invariant. We prove that in any long time constant mean curvature Einstein flow over Σ, having bounded C space-time curvature at the cosmological scale, the reduced volume V = (−k 3 )V olg(k)(Σ) (g(k) is the evolving spatial three-metric and k the mean curvature) decays monotonically towards the volume value of the geometrization in whi...

متن کامل

Existence and Regularity for the Generalized Mean Curvature Flow Equations

X iv :0 90 8. 30 57 v1 [ m at h. A P] 2 1 A ug 2 00 9 EXISTENCE AND REGULARITY FOR THE GENERALIZED MEAN CURVATURE FLOW EQUATIONS RONGLI HUANG AND JIGUANG BAO Abstract. By making use of the approximation method, we obtain the existence and regularity of the viscosity solutions for the generalized mean curvature flow. The asymptotic behavior of the flow is also considered. In particular, the Diri...

متن کامل

Ginzburg-Landau equation and motion by mean curvature

In this paper we study the asymptotic behavior (c —• 0) of the Ginzburg Landau equation: ul Au< + £/(««) = 0, where the unknown u is a real-valued function of [0,oo)xR<, and the given nonlinear function f(u) = 2u(u 1) is the derivative of a potential W(«) = («* l ) 3 / 2 with two minima of equal depth. We prove that there are a subsequence €n and two disjoint, open subsets V, N of (0,oo)xft' f ...

متن کامل

Nonconvex mean curvature flow as a formal singular limit of the nonlinear bidomain model

In this paper we study the nonconvex anisotropic mean curvature flow of a hypersurface. This corresponds to an anisotropic mean curvature flow where the anisotropy has a nonconvex Frank diagram. The geometric evolution law is therefore forward-backward parabolic in character, hence ill-posed in general. We study a particular regularization of this geometric evolution, obtained with a nonlinear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016