Densities of Idempotent Measures and Large Deviations
نویسنده
چکیده
Considering measure theory in which the semifield of positive real numbers is replaced by an idempotent semiring leads to the notion of idempotent measure introduced by Maslov. Then, idempotent measures or integrals with density correspond to supremums of functions for the partial order relation induced by the idempotent structure. In this paper, we give conditions under which an idempotent measure has a density and show by many examples that they are often satisfied. These conditions depend on the lattice structure of the semiring and on the Boolean algebra in which the measure is defined. As an application, we obtain a necessary and sufficient condition for a family of probabilities to satisfy the large deviation principle.
منابع مشابه
Densities of idempotent measures and large deviations Marianne Akian N 2534 Avril 1995
Considering measure theory in which the semifield of positive real numbers is replaced by an idempotent semiring leads to the notion of idempotent measure introduced by Maslov. Then, idempotent measures or integrals with density correspond to supremums of functions for the partial order relation induced by the idempotent structure. In this paper, we give conditions under which an idempotent mea...
متن کاملThe idempotent Radon--Nikodym theorem has a converse statement
Idempotent integration is an analogue of the Lebesgue integration where σ-additive measures are replaced by σ-maxitive measures. It has proved useful in many areas of mathematics such as fuzzy set theory, optimization, idempotent analysis, large deviation theory, or extreme value theory. Existence of Radon–Nikodym derivatives, which turns out to be crucial in all of these applications, was prov...
متن کاملIdempotent Probability Measures, I
The set of all idempotent probability measures (Maslov measures) on a compact Hausdorff space endowed with the weak* topology determines is functorial on the category Comp of compact Hausdorff spaces. We prove that the obtained functor is normal in the sense of E. Shchepin. Also, this functor is the functorial part of a monad on Comp. We prove that the idempotent probability measure monad conta...
متن کاملUncertain Dynamical Systems Defined by Pseudomeasures
This paper deals with uncertain dynamical systems in which predictions about the future state of a system are assessed by so called pseudomeasures. Two special cases are stochastic dynamical systems, where the pseudomeasure is the conventional probability measure, and fuzzy dynamical systems in which the pseudomeasure is a so called possibility measure. New results about possibilistic systems a...
متن کاملStochastic processes in random graphs
We study the asymptotics of large, moderate and normal deviations for the connected components of the sparse random graph by the method of stochastic processes. We obtain the logarithmic asymptotics of large deviations of the joint distribution of the number of connected components, of the sizes of the giant components, and of the numbers of the excess edges of the giant components. For the sup...
متن کامل