Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms

نویسندگان

  • José C. Bellido
  • Carlos Mora-Corral
چکیده

This paper is concerned with the problem of approximating a homeomorphism by piecewise affine homeomorphisms. The main result is as follows: every homeomorphism from a planar domain with a polygonal boundary to R that is globally Hölder continuous of exponent α ∈ (0, 1], and whose inverse is also globally Hölder continuous of exponent α can be approximated in the Hölder norm of exponent β by piecewise affine homeomorphisms, for some β ∈ (0, α) that only depends on α. The proof is constructive. We adapt the proof of simplicial approximation in the supremum norm, and measure the side lengths and angles of the triangulation over which the approximating homeomorphism is piecewise affine. The approximation in the supremum norm, and a control on the minimum angle and on the ratio between the maximum and minimum side lengths of the triangulation suffice to obtain approximation in the Hölder norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Continuous, Piecewise Affine Surface Map with No Measure of Maximal Entropy

It is known that piecewise affine surface homeomorphisms always have measures of maximal entropy. This is easily seen to fail in the discontinuous case. Here we describe a piecewise affine, globally continuous surface map with no measure of maximal entropy.

متن کامل

On homeomorphisms and quasi-isometries of the real line

We show that the group of piecewise-linear homeomorphisms of R having bounded slopes surjects onto the group QI(R) of all quasi-isometries of R. We prove that the following groups can be imbedded in QI(R): the group of compactly supported piecewise-linear homeomorphisms of R, the Richard Thompson group F , and the free group of continuous rank.

متن کامل

Maximal Entropy Measures for Piecewise Affine Surface Homeomorphisms

We study the dynamics of piecewise affine surface homeomorphisms from the point of view of their entropy. Under the assumption of positive topological entropy, we establish the existence of finitely many ergodic and invariant probability measures maximizing entropy and prove a multiplicative lower bound for the number of periodic points. This is intended as a step towards the understanding of s...

متن کامل

m at h . O A ] 1 8 Ja n 20 05 Minimal Homeomorphisms and Approximate Conjugacy in Measure ∗

Let X be an infinite compact metric space with finite covering dimension. Let α, β : X → X be two minimal homeomorphisms. Suppose that the range of K0-groups of both crossed product C∗-algebras are dense in the space of real affine continuous functions. We show that α and β are approximately conjugate uniformly in measure if and only if they have affine homeomorphic invariant probability measur...

متن کامل

2 00 5 Minimal Homeomorphisms and Approximate Conjugacy in Measure ∗

Let X be an infinite compact metric space with finite covering dimension. Let α, β : X → X be two minimal homeomorphisms. Suppose that the range of K0-groups of both crossed products are dense in the space of real affine continuous functions. Suppose also that both α and β have countably many extremal invariant measures. We show that α and β are approximately conjugate uniformly in measure if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008