Fast perfect sampling from linear extensions

نویسنده

  • Mark Huber
چکیده

In this paper, we study the problem of sampling (exactly) uniformly from the set of linear extensions of an arbitrary partial order. Previous Markov chain techniques have yielded algorithms that generate approximately uniform samples. Here, we create a bounding chain for one such Markov chain, and by using a non-Markovian coupling together with a modified form of coupling from the past, we build an algorithm for perfectly generating samples. The expected running time of the procedure is O(n3 ln n), making the technique as fast as the mixing time of the Karzanov/Khachiyan chain upon which it is based. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON RELATIVE CENTRAL EXTENSIONS AND COVERING PAIRS

Let (G;N) be a pair of groups. In this article, first we con-struct a relative central extension for the pair (G;N) such that specialtypes of covering pair of (G;N) are homomorphic image of it. Second, weshow that every perfect pair admits at least one covering pair. Finally,among extending some properties of perfect groups to perfect pairs, wecharacterize covering pairs of a perfect pair (G;N)...

متن کامل

Using TPA to count linear extensions

A linear extension of a poset P is a permutation of the elements of the set that respects the partial order. Let L(P ) denote the number of linear extensions. It is a #P complete problem to determine L(P ) exactly for an arbitrary poset, and so randomized approximation algorithms that draw randomly from the set of linear extensions are used. In this work, the set of linear extensions is embedde...

متن کامل

A Matlab Toolbox for Efficient Perfect Reconstruction Time-Frequency Transforms with Log-Frequency Resolution

In this paper, we propose a time-frequency representation where the frequency bins are distributed uniformly in log-frequency and their Q-factors obey a linear function of the bin center frequencies. The latter allows for time-frequency representations where the bandwidths can be e.g. constant on the log-frequency scale (constant Q) or constant on the auditory critical-band scale (smoothly vary...

متن کامل

The Mixing of Markov Chains on Linear Extensions in Practice

We investigate almost uniform sampling from the set of linear extensions of a given partial order. The most efficient schemes stem from Markov chains whose mixing time bounds are polynomial, yet impractically large. We show that, on instances one encounters in practice, the actual mixing times can be much smaller than the worst-case bounds, and particularly so for a novel Markov chain we put fo...

متن کامل

Practically Perfect

We prove that perfect distributions exist when using a finite number of bits to represent the parameters of a Bayesian network. In addition, we provide an upper bound on the probability of sampling a non-perfect distribution when using a fixed number of bits for the parameters and that the upper bound approaches zero exponentially fast as one increases the number of bits. We also provide an upp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006