Engulfment of Apoptotic Cells in C. elegans Is Mediated by Integrin α/SRC Signaling
نویسندگان
چکیده
BACKGROUND Engulfment of apoptotic cells is important for cellular homeostasis and the development of multicellular organisms. Previous studies have shown that more than one engulfment receptors act upstream of the conserved signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for cell corpse removal in C. elegans, but little is known about their identities, except for PSR-1. RESULTS We show that in C. elegans, integrin functions as an engulfment receptor in the recognition and subsequent phagocytosis of apoptotic cells. Mutations in the integrin alpha gene ina-1 result in inefficient engulfment of apoptotic cells. The INA-1 extracellular domain binds to the surface of apoptotic cells in vivo. This binding requires the phospholipid scramblase SCRM-1, which promotes the exposure of phosphatidylserine, a key "eat me" signal in apoptotic cells. Furthermore, we identify an essential role of the nonreceptor tyrosine kinase SRC-1 in INA-1-mediated cell corpse removal. INA-1 and SRC-1 both act in the engulfing cells during the engulfment process and are colocalized in the phagocytic cups extending around apoptotic cells. Finally, our genetic and biochemical data suggest that SRC-1 relays the scrm-1-dependent engulfment signal from INA-1 to the conserved motility-promoting signaling complex CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for CED-10/Rac activation, probably by interactions with CED-2 and the INA-1 cytoplasmic domain, leading to the internalization of apoptotic cells. CONCLUSIONS Our findings provide evidence that integrin functions as an engulfment receptor at the whole-organism level and reveal a nonconventional signaling pathway in which SRC provides a FAK-independent linkage between integrin alpha and the common motility-promoting signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO to promote the internalization of apoptotic cells.
منابع مشابه
Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans
Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integri...
متن کاملNDK-1, the Homolog of NM23-H1/H2 Regulates Cell Migration and Apoptotic Engulfment in C. elegans
Abnormal regulation of cell migration and altered rearrangement of cytoskeleton are characteristic of metastatic cells. The first described suppressor of metastatic processes is NM23-H1, which displays NDPK (nucleoside-diphosphate kinase) activity. To better understand the role of nm23 genes in cell migration, we investigated the function of NDK-1, the sole Caenorhabditis elegans homolog of gro...
متن کاملScrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary
For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professio...
متن کاملPhagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans
The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cel...
متن کاملTwo-step engulfment of apoptotic cells.
Apoptotic cells expose phosphatidylserine on their surface as an "eat me" signal, and macrophages respond by engulfing them. Although several molecules that specifically bind phosphatidylserine have been identified, the molecular mechanism that triggers engulfment remains elusive. Here, using a mouse pro-B cell line, Ba/F3, that grows in suspension, we reconstituted the engulfment of apoptotic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010