Area map of mouse visual cortex.

نویسندگان

  • Quanxin Wang
  • Andreas Burkhalter
چکیده

It is controversial whether mouse extrastriate cortex has a "simple" organization in which lateral primary visual cortex (V1) is adjoined by a single area V2 or has a "complex" organization, in which lateral V1 is adjoined by multiple distinct areas, all of which share the vertical meridian with V1. Resolving this issue is important for understanding the evolution and development of cortical arealization. We have used triple pathway tracing combined with receptive field recordings to map azimuth and elevation in the same brain and have referenced these maps against callosal landmarks. We found that V1 projects to 15 cortical fields. At least nine of these contain maps with complete and orderly representations of the entire visual hemifield and therefore represent distinct areas. One of these, PM, adjoins V1 at the medial border. Five areas, P, LM, AL, RL, and A, adjoin V1 on the lateral border, but only LM shares the vertical meridian representation with V1. This suggests that LM is homologous to V2 and that the lateral extrastriate areas do not represent modules within a single area V2. Thus, mouse visual cortex is "simple" in the sense that lateral V1 is adjoined by a single V2-like area, LM, and "complex" in having a string of areas in lateral extrastriate cortex, which receive direct V1 input. The results suggest that large numbers of areas with topologically equivalent maps of the visual field emerge early in evolution and that homologous areas are inherited in different mammalian lineages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topography and areal organization of mouse visual cortex.

To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mous...

متن کامل

Mapping retinotopic structure in mouse visual cortex with optical imaging.

We have used optical imaging of intrinsic signals to visualize the retinotopic organization of mouse visual cortex. The functionally determined position, size, and shape of area 17 corresponded precisely to the location of this area as seen in stained cortical sections. The retinotopic map, which was confirmed with electrophysiological recordings, exhibited very low inter-animal variability, th...

متن کامل

Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse Onychomys arenicola.

Mammalian neocortical circuits are functionally organized such that the selectivity of individual neurons systematically shifts across the cortical surface, forming a continuous map. Maps of the sensory space exist in cortex, such as retinotopic maps in the visual system or tonotopic maps in the auditory system, but other functional response properties also may be similarly organized. For examp...

متن کامل

Effects of visual deprivation on epileptic activity in mature rat visual cortex

  Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...

متن کامل

The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map.

Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 502 3  شماره 

صفحات  -

تاریخ انتشار 2007