Accelerated Stochastic Block Coordinate Gradient Descent for Sparsity Constrained Nonconvex Optimization

نویسندگان

  • Jinghui Chen
  • Quanquan Gu
چکیده

We propose an accelerated stochastic block coordinate descent algorithm for nonconvex optimization under sparsity constraint in the high dimensional regime. The core of our algorithm is leveraging both stochastic partial gradient and full partial gradient restricted to each coordinate block to accelerate the convergence. We prove that the algorithm converges to the unknown true parameter at a linear rate, up to the statistical error of the underlying model. Experiments on both synthetic and real datasets backup our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Mini-batch Randomized Block Coordinate Descent Method

We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting th...

متن کامل

Block stochastic gradient iteration for convex and nonconvex optimization

The stochastic gradient (SG) method can minimize an objective function composed of a large number of differentiable functions or solve a stochastic optimization problem, very quickly to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, handles problems with multiple blocks of variables by updating them one at a time; when the blocks of variables are (much...

متن کامل

ar X iv : 1 30 9 . 22 49 v 1 [ m at h . O C ] 9 S ep 2 01 3 STOCHASTIC BLOCK MIRROR DESCENT METHODS FOR NONSMOOTH AND STOCHASTIC OPTIMIZATION ∗

Abstract. In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significant...

متن کامل

Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce ...

متن کامل

Accelerated gradient methods for nonconvex nonlinear and stochastic programming

In this paper, we generalize the well-known Nesterov’s accelerated gradient (AG) method, originally designed for convex smooth optimization, to solve nonconvex and possibly stochastic optimization problems. We demonstrate that by properly specifying the stepsize policy, the AG method exhibits the best known rate of convergence for solving general nonconvex smooth optimization problems by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016