A set of recombineering plasmids for gram-negative bacteria.
نویسندگان
چکیده
We have constructed a set of plasmids that can be used to express recombineering functions in some gram-negative bacteria, thereby facilitating in vivo genetic manipulations. These plasmids include an origin of replication and a segment of the bacteriophage lambda genome comprising the red genes (exo, bet and gam) under their native control. These constructs do not require the anti-termination event normally required for Red expression, making their application more likely in divergent species. Some of the plasmids have temperature-sensitive replicons to simplify curing. In creating these vectors we developed two useful recombineering applications. Any gene linked to a drug marker can be retrieved by gap-repair using only a plasmid origin and target homologies. A plasmid origin of replication can be changed to a different origin by targeted replacement, to potentially alter its copy number and host range. Both these techniques will prove useful for manipulation of plasmids in vivo. Most of the Red plasmid constructs catalyzed efficient recombination in E. coli with a low level of uninduced background recombination. These Red plasmids have been successfully tested in Salmonella, and we anticipate that that they will provide efficient recombination in other related gram-negative bacteria.
منابع مشابه
Genome modifications and cloning using a conjugally transferable recombineering system
The genetic modification of primary bacterial disease isolates is challenging due to the lack of highly efficient genetic tools. Herein we describe the development of a modified PCR-based, λ Red-mediated recombineering system for efficient deletion of genes in Gram-negative bacteria. A series of conjugally transferrable plasmids were constructed by cloning an oriT sequence and different antibio...
متن کاملIdentification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages.
We report the identification and functional analysis of nine genes from Gram-positive and Gram-negative bacteria and their phages that are similar to lambda (lambda) bet or Escherichia coli recT. Beta and RecT are single-strand DNA annealing proteins, referred to here as recombinases. Each of the nine other genes when expressed in E. coli carries out oligonucleotide-mediated recombination. To o...
متن کاملλ-Red-Recombineering Live Attenuated ΔipaD Shigella dysenteriae from Iranian Isolates as A Candidate of Vaccine
Shigella species (spp.) are gram-negative bacteria that are responsible for shigellosis. Although it can be controlled via antibiotics, increasing number of antibiotic resistant isolates of Shigella have been reported. Therefore, other strategies such as production of specific vaccine against this organism could be a suitable therapeutic approach. Attenuated live vaccines produced by gene delet...
متن کاملHigh efficiency recombineering in lactic acid bacteria
The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to gram-positive bacteria has...
متن کاملREPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering
Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 379 شماره
صفحات -
تاریخ انتشار 2006