Rational Design of CXCR4 Specific Antibodies with Elongated CDRs
نویسندگان
چکیده
The bovine antibody (BLV1H12) which has an ultralong heavy chain complementarity determining region 3 (CDRH3) provides a novel scaffold for antibody engineering. By substituting the extended CDRH3 of BLV1H12 with modified CXCR4 binding peptides that adopt a β-hairpin conformation, we generated antibodies specifically targeting the ligand binding pocket of CXCR4 receptor. These engineered antibodies selectively bind to CXCR4 expressing cells with binding affinities in the low nanomolar range. In addition, they inhibit SDF-1-dependent signal transduction and cell migration in a transwell assay. Finally, we also demonstrate that a similar strategy can be applied to other CDRs and show that a CDRH2-peptide fusion binds CXCR4 with a K(d) of 0.9 nM. This work illustrates the versatility of scaffold-based antibody engineering and could greatly expand the antibody functional repertoire in the future.
منابع مشابه
Molecular basis for the antagonistic activity of an anti-CXCR4 antibody
Antagonistic antibodies targeting the G-protein C-X-C chemokine receptor 4 (CXCR4) hold promising therapeutic potential in various diseases. We report for the first time the detailed mechanism of action at a molecular level of a potent anti-CXCR4 antagonistic antibody (MEDI3185). We characterized the MEDI3185 paratope using alanine scanning on all 6 complementary-determining regions (CDRs). We ...
متن کاملModeling Tertiary Structure of Complementarity Determining Region of Antibodies
Knowing the tertiary structure of proteins is important to predict protein function and to achieve rational drug design. However, huge amounts of money and time are needed to determine tertiary structures by experimental method. Only a small number of protein structures have been experimentally determined; therefore, prediction of the tertiary structure of proteins by computer should be of grea...
متن کاملThe Structural Basis of Antibody-Antigen Recognition
The function of antibodies (Abs) involves specific binding to antigens (Ags) and activation of other components of the immune system to fight pathogens. The six hypervariable loops within the variable domains of Abs, commonly termed complementarity determining regions (CDRs), are widely assumed to be responsible for Ag recognition, while the constant domains are believed to mediate effector act...
متن کاملPrinciples for computational design of binding antibodies.
Natural proteins must both fold into a stable conformation and exert their molecular function. To date, computational design has successfully produced stable and atomically accurate proteins by using so-called "ideal" folds rich in regular secondary structures and almost devoid of loops and destabilizing elements, such as cavities. Molecular function, such as binding and catalysis, however, oft...
متن کاملComputer-aided antibody design
Recent clinical trials using antibodies with low toxicity and high efficiency have raised expectations for the development of next-generation protein therapeutics. However, the process of obtaining therapeutic antibodies remains time consuming and empirical. This review summarizes recent progresses in the field of computer-aided antibody development mainly focusing on antibody modeling, which i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 136 شماره
صفحات -
تاریخ انتشار 2014