Finite-frequency tomography using adjoint methods—Methodology and examples using membrane surface waves
نویسنده
چکیده
S U M M A R Y We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an ‘adjoint’ wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectralelement method (SEM) and a phase-speed model for southern California. A ‘target’ phasespeed model is used to generate the ‘data’ at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana– doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.
منابع مشابه
Surface wave tomography: global membrane waves and adjoint methods
S U M M A R Y We implement the wave equation on a spherical membrane, with a finite-difference algorithm that accounts for finite-frequency effects in the smooth-Earth approximation, and use the resulting ‘membrane waves’ as an analogue for surface wave propagation in the Earth. In this formulation, we derive fully numerical 2-D sensitivity kernels for phase anomaly measurements, and employ the...
متن کاملEmpirically determined finite frequency sensitivity kernels for surface waves
S U M M A R Y We demonstrate a method for the empirical construction of 2-D surface wave phase traveltime finite frequency sensitivity kernels by using phase traveltime measurements obtained across a large dense seismic array. The method exploits the virtual source and reciprocity properties of the ambient noise cross-correlation method. The adjoint method is used to construct the sensitivity k...
متن کاملSurface wave sensitivity: mode summation versus adjoint SEM
S U M M A R Y We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and am...
متن کاملMultiscale adjoint waveform-difference tomography using wavelets
Full-waveform seismic inversions based on minimizing the distance between observed and predicted seismograms are, in principle, able to yield better-resolved earth models than those minimizing misfits derived from traveltimes alone. Adjoint-based methods provide an efficient way of calculating the gradient of the misfit function via a sequence of forward-modeling steps, which, using spectral-el...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کامل