Aggregation of inertial particles in random flows.

نویسندگان

  • B Mehlig
  • M Wilkinson
  • K Duncan
  • T Weber
  • M Ljunggren
چکیده

We consider the trajectories of particles suspended in a randomly moving fluid. If the Lyapunov exponent of these trajectories is negative, the paths of these particles coalesce, so that particles aggregate. Here we give a detailed account of a method [B. Mehlig and M. Wilkinson, Phys. Rev. Lett. 92, 250602 (2004)] for calculating this exponent: it is expressed as the expectation value of a random variable evolving under a stochastic differential equation. We analyze this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic differential equation is a Langevin equation. We derive an asymptotic perturbation expansion of the Lyapunov exponent for particles suspended in three-dimensional flows in terms of a dimensionless measure of the inertia of the particles, epsilon, and a measure of the relative intensities of potential and solenoidal components of the velocity field, Gamma. We determine the phase diagram in the epsilon-Gamma plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the aggregation of inertial particles in random flows

(Received ??) We describe a criterion for particles suspended in a randomly moving fluid to aggregate. Aggregation occurs when the expectation value of a random variable is negative. This variable evolves under a stochastic differential equation. We analyse this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic ...

متن کامل

Aggregation and fragmentation dynamics of inertial particles in chaotic flows.

Inertial particles advected in chaotic flows often accumulate in strange attractors. While moving in these fractal sets they usually approach each other and collide. Here we consider inertial particles aggregating upon collision. The new particles formed in this process are larger and follow the equation of motion with a new parameter. These particles can in turn fragment when they reach a cert...

متن کامل

Lagrangian and Eulerian descriptions of inertial particles in random flows

Lagrangian and Eulerian descriptions of inertial particles in random flows S. A. Derevyanko a b , G. Falkovich d , K. Turitsyn c & S. Turitsyn a a Photonics Research Group, Aston University , Birmingham, B4 7ET, UK b Institute for Radiophysics and Electronics , Kharkov, Ukraine (on leave), 61085 c Landau Institute for Theoretical Physics , Moscow, 117940, Russian Federation d Physics of Complex...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

Inertial particles driven by a telegraph noise.

We present a model for the Lagrangian dynamics of inertial particles in a compressible flow, where fluid velocity gradients are modeled by a telegraph noise. The model allows for an analytic investigation of the role of time correlation of the flow in the aggregation-disorder transition of inertial particles. The dependence on the Stokes number St and the Kubo number Ku of the Lyapunov exponent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005