Lower Bounds and Aggregation in Density Estimation

نویسنده

  • Guillaume Lecué
چکیده

In this paper we prove the optimality of an aggregation procedure. We prove lower bounds for aggregation of model selection type of M density estimators for the Kullback-Leibler divergence (KL), the Hellinger’s distance and the L1-distance. The lower bound, with respect to the KL distance, can be achieved by the on-line type estimate suggested, among others, by Yang (2000a). Combining these results, we state that logM/n is an optimal rate of aggregation in the sense of Tsybakov (2003), where n is the sample size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

State Compression of Markov Processes via Empirical Low-Rank Estimation

Model reduction is a central problem in analyzing complex systems and highdimensional data. We study the state compression of finite-state Markov process from its empirical trajectories. We adopt a low-rank model which is motivated by the state aggregation of controlled systems. A spectral method is proposed for estimating the frequency and transition matrices, estimating the compressed state s...

متن کامل

Linear and convex aggregation of density estimators

We study the problem of learning the best linear and convex combination of M estimators of a density with respect to the mean squared risk. We suggest aggregation procedures and we prove sharp oracle inequalities for their risks, i.e., oracle inequalities with leading constant 1. We also obtain lower bounds showing that these procedures attain optimal rates of aggregation. As an example, we con...

متن کامل

Estimation of the Density of a Determinantal Process

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

متن کامل

On Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions

Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2006