Auditory cortical receptive fields: stable entities with plastic abilities.

نویسندگان

  • Mounya Elhilali
  • Jonathan B Fritz
  • Tai-Shih Chi
  • Shihab A Shamma
چکیده

To form a reliable, consistent, and accurate representation of the acoustic scene, a reasonable conjecture is that cortical neurons maintain stable receptive fields after an early period of developmental plasticity. However, recent studies suggest that cortical neurons can be modified throughout adulthood and may change their response properties quite rapidly to reflect changing behavioral salience of certain sensory features. Because claims of adaptive receptive field plasticity could be confounded by intrinsic, labile properties of receptive fields themselves, we sought to gauge spontaneous changes in the responses of auditory cortical neurons. In the present study, we examined changes in a series of spectrotemporal receptive fields (STRFs) gathered from single neurons in successive recordings obtained over time scales of 30-120 min in primary auditory cortex (A1) in the quiescent, awake ferret. We used a global analysis of STRF shape based on a large database of A1 receptive fields. By clustering this STRF space in a data-driven manner, STRF sequences could be classified as stable or labile. We found that >73% of A1 neurons exhibited stable receptive field attributes over these time scales. In addition, we found that the extent of intrinsic variation in STRFs during the quiescent state was insignificant compared with behaviorally induced STRF changes observed during performance of spectral auditory tasks. Our results confirm that task-related changes induced by attentional focus on specific acoustic features were indeed confined to behaviorally salient acoustic cues and could be convincingly attributed to learning-induced plasticity when compared with "spontaneous" receptive field variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of auditory cortical synaptic receptive fields.

The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control corti...

متن کامل

Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields.

Long-term modification of cortical receptive field maps follows learning of sensory discriminations and conditioned associations. In the process of determining whether appetitive - as opposed to aversive - conditioning is effective in causing such plastic changes, it was discovered that multineuron receptive fields, when measured in rats under ketamine-sedation, vary substantially over the cour...

متن کامل

Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons

Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neur...

متن کامل

Learning-induced changes of auditory receptive fields.

Classical conditioning specifically modifies receptive fields in primary and secondary auditory cortical areas to favor the frequency of a tone signal over other frequencies, including tuning shifts toward, or to, this frequency. This plasticity of receptive fields is associative and highly specific, can develop very rapidly, can be expressed under anesthesia and can be maintained indefinitely....

متن کامل

Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex.

Two fundamental issues in auditory cortical processing are the relative importance of thalamocortical versus intracortical circuits in shaping response properties in primary auditory cortex (ACx), and how the effects of neuromodulators on these circuits affect dynamic changes in network and receptive field properties that enhance signal processing and adaptive behavior. To investigate these iss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 39  شماره 

صفحات  -

تاریخ انتشار 2007