Realization and identification of autonomous linear periodically time-varying systems
نویسندگان
چکیده
Subsampling of a linear periodically time-varying system results in a collection of linear time-invariant systems with common poles. This key fact, known as “lifting”, is used in a two step realization method. The first step is the realization of the time-invariant dynamics (the lifted system). Computationally, this step is a rank-revealing factorization of a block-Hankel matrix. The second step derives a state space representation of the periodic time-varying system. It is shown that no extra computations are required in the second step. The computational complexity of the overall method is therefore equal to the complexity for the realization of the lifted system. A modification of the realization method is proposed, which makes the complexity independent of the parameter variation period. Replacing the rankrevealing factorization in the realization algorithm by structured low-rank approximation yields a maximum likelihood identification method. Existing methods for structured low-rank approximation are used to identify efficiently linear periodically time-varying system. These methods can deal with missing data.
منابع مشابه
Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems
Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملOn the Approximation of Pseudo Linear Systems by Linear Time Varying Systems (RESEARCH NOTE)
This paper presents a modified method for approximating nonlinear systems by a sequence of linear time varying systems. The convergence proof is outlined and the potential of this methodology is discussed. Simulation results are used to show the effectiveness of the proposed method.
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملFrequency Domain Total Least Squares Identification of Linear, Periodically Time-Varying Systems from Noisy Input-Output Data
This paper presents an extension of the well known linear time invariant identification theory to Linear, Periodically Time-Varying (LPTV) systems. The considered class of systems is described by ordinary differential equations with coefficients that vary periodically over time, making use of multisines both for excitations as well as for the time-varying system parameters. To solve the model e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 50 شماره
صفحات -
تاریخ انتشار 2014