Local Deep Hashing Matching of Aerial Images Based on Relative Distance and Absolute Distance Constraints
نویسندگان
چکیده
Aerial images have features of high resolution, complex background, and usually require large amounts of calculation, however, most algorithms used in matching of aerial images adopt the shallow hand-crafted features expressed as floating-point descriptors (e.g., SIFT (Scale-invariant Feature Transform), SURF (Speeded Up Robust Features)), which may suffer from poor matching speed and are not well represented in the literature. Here, we propose a novel Local Deep Hashing Matching (LDHM) method for matching of aerial images with large size and with lower complexity or fast matching speed. The basic idea of the proposed algorithm is to utilize the deep network model in the local area of the aerial images, and study the local features, as well as the hash function of the images. Firstly, according to the course overlap rate of aerial images, the algorithm extracts the local areas for matching to avoid the processing of redundant information. Secondly, a triplet network structure is proposed to mine the deep features of the patches of the local image, and the learned features are imported to the hash layer, thus obtaining the representation of a binary hash code. Thirdly, the constraints of the positive samples to the absolute distance are added on the basis of the triplet loss, a new objective function is constructed to optimize the parameters of the network and enhance the discriminating capabilities of image patch features. Finally, the obtained deep hash code of each image patch is used for the similarity comparison of the image patches in the Hamming space to complete the matching of aerial images. The proposed LDHM algorithm evaluates the UltraCam-D dataset and a set of actual aerial images, simulation result demonstrates that it may significantly outperform the state-of-the-art algorithm in terms of the efficiency and performance.
منابع مشابه
Compressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کاملAutomatic Power Line Inspection Using UAV Images
Power line inspection ensures the safe operation of a power transmission grid. Using unmanned aerial vehicle (UAV) images of power line corridors is an effective way to carry out these vital inspections. In this paper, we propose an automatic inspection method for power lines using UAV images. This method, known as the power line automatic measurement method based on epipolar constraints (PLAME...
متن کاملQuery-adaptive Image Retrieval by Deep Weighted Hashing
The hashing methods have attracted much attention for large scale image retrieval. Some deep hashing methods have achieved promising results by taking advantage of the better representation power of deep networks recently. However, existing deep hashing methods treat all hash bits equally. On one hand, a large number of images share the same distance to a query image because of the discrete Ham...
متن کاملA New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment
The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...
متن کاملطراحی و توسعه یک روش تلفیقی تناظریابی ناحیه ای و عارضه مبنای جدید برای توجیه نسبی در فتوگرامتری برد کوتاه
By far, many stereo-matching techniques have been successfully proposed and applied in digital aerial photogrammetry. However, due to some problems such as large parallaxes, occlusions, geometric deformations, and repetitive patterns in convergent close range images, these methods may not be applicable to the same level of success as that of aerial imagery. In order to overcome these shortcomin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017