In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction.
نویسندگان
چکیده
Studies were performed to investigate the UDP-glucuronosyltransferase enzyme(s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine (LTG) and the mechanistic basis for the LTG-valproic acid (VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill (1869 +/- 1286 microM, n = 0.65 +/- 0.16) and Michaelis-Menten (Km 2234 +/- 774 microM) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a Km of 1558 microM. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin (BSA) (2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA (10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. Ki values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 +/- 370 microM and 387 +/- 12 microM in the absence and presence, respectively, of BSA (2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.
منابع مشابه
Benzoylated uronic acid building blocks and synthesis of N-uronate conjugates of lamotrigine.
A chemoenzymatic approach towards benzoylated uronic acid building blocks has been investigated starting with benzoylated hexapyranosides using regioselective C-6 enzymatic hydrolysis as the key step. Two of the building blocks were reacted with the antiepileptic drug lamotrigine. Glucuronidation of lamotrigine using methyl (2,3,4-tri-O-benzoyl-α-D-glycopyranosyl bromide)uronate proceeded to gi...
متن کاملEconomic evaluation of anti-epileptic drug therapies with specific focus on teratogenic outcomes.
BACKGROUND Anti-epileptic drugs are known to be teratogenic, yet many women do need to continue the anti-epileptic drug use during pregnancy. OBJECTIVES To perform an economic evaluation of the anti-epileptic drug choice in young women who potentially wish to become pregnant. In particular, to estimate the impact of teratogenicity on the costs per quality adjusted life year (QALY). METHODS ...
متن کاملAction Tremor Associated with Lamotrigine Monotherapy
Lamotrigine (LTG) is associated with a tremor when given in combination with valproic acid; however, a tremor associated with lamotrigine monotherapy is rare. Here, we report a case of positional and action tremor associated with lamotrigine use. Based on the temporal relationship, it is conceivable that lamotrigine increases serotonin transmission or affects basal ganglia dopamine activity, th...
متن کاملQuality of life and treatment satisfaction in Spanish epilepsy patients on monotherapy with lamotrigine or valproic acid
BACKGROUND Patients suffering from epilepsy have an impaired health related quality of life (HRQoL) because of seizures and treatment adverse events. Epilepsy affects differently both genders, due to hormonal influence in women. The aim of this study is to assess the impact on HRQoL and treatment satisfaction in epilepsy patients treated with stable doses of lamotrigine and valproic acid. MET...
متن کاملNeural network dysfunction in bipolar depression: clues from the efficacy of lamotrigine.
One strategy to understand bipolar disorder is to study the mechanism of action of mood-stabilizing drugs, such as valproic acid and lithium. This approach has implicated a number of intracellular signalling elements, such as GSK3beta (glycogen synthase kinase 3beta), ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) or protein kinase C. However, lamotrigine do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2006