Density dependence in marine fish populations revealed at small and large spatial scales.
نویسنده
چکیده
Experimental manipulation of population density has frequently been used to demonstrate demographic density dependence. However, such studies are usually small scale and typically provide evidence of spatial (within-generation) density dependence. It is often unclear whether small-scale, experimental tests of spatial density dependence will accurately describe temporal (between-generation) density dependence required for population regulation. Understanding the mechanisms generating density dependence may provide a link between spatial experiments and temporal regulation of populations. In this study, I manipulated the density of recently settled kelp rockfish (Sebastes atrovirens) in both the presence and absence of predators to test for density-dependent mortality and whether predation was the mechanism responsible. I also examined mortality of rockfish cohorts within kelp beds throughout central California to evaluate temporal (between-generation) density dependence in mortality. Experiments suggested that short-term behavioral responses of predators and/or a shortage of prey refuges caused spatial density dependence. Temporal density dependence in mortality was also detected at larger spatial scales for several species of rockfish. It is likely that short-term responses of predators generated both spatial and temporal density dependence in mortality. Spatial experiments that describe the causal mechanisms generating density dependence may therefore be valuable in describing temporal density dependence and population regulation.
منابع مشابه
Small-scale field experiments accurately scale up to predict density dependence in reef fish populations at large scales.
Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire...
متن کاملDensity dependence and population regulation in marine fish: a large-scale, long-term field manipulation
Do small-scale experiments showing spatial density dependence in marine fishes scale-up to temporal density dependence and regulation of relatively large local populations? If so, what are the causative mechanisms and their implications? We conducted an eight-year multigeneration study of population dynamics of bicolor damselfish (Stegastes partitus) inhabiting four large coral reefs in the Bah...
متن کاملContext-dependent effects of marine protected areas on predatory interactions
We studied the effects of marine protected areas (MPAs) on predatory interactions at a regional scale of 3 different islands across the geographical gradient of the Canary Islands. Protection measures positively affected predatory fish assemblages, enhancing the intensity of predatory interactions in comparison to equivalent unprotected areas (UAs), and causing indirect effects on populations o...
متن کاملLarge scale, synchronous variability of marine fish populations driven by commercial exploitation.
Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere-ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlant...
متن کاملContinuous Monitoring of Fish Population and Behavior by Instantaneous Continental-Shelf-Scale Imaging with Ocean-Waveguide Acoustics
The long-term goals of this program are to (1) instantaneously detect, image and spatially chart fish populations over continental-shelf scales, and (2) continuously monitor the areal densities and behavior of these fish populations over time using a novel audible frequency acoustic system (3005000Hz) referred to as Ocean Acoustic Waveguide Remote Sensing (OAWRS). This new method is being appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2006