c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism

نویسندگان

  • Ping Gao
  • Irina Tchernyshyov
  • Tsung-Cheng Chang
  • Yun-Sil Lee
  • Kayoko Kita
  • Takafumi Ochi
  • Karen Zeller
  • Angelo M. De Marzo
  • Jennifer E. Van Eyk
  • Joshua T. Mendell
  • Chi V. Dang
چکیده

Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes glutamine to generate ATP and lactate. Glutamine, which is highly transported into proliferating cells, is a major source of energy and nitrogen for biosynthesis, and a carbon substrate for anabolic processes in cancer cells, but the regulation of glutamine metabolism is not well understood. Here we report that the c-Myc (hereafter referred to as Myc) oncogenic transcription factor, which is known to regulate microRNAs and stimulate cell proliferation, transcriptionally represses miR-23a and miR-23b, resulting in greater expression of their target protein, mitochondrial glutaminase, in human P-493 B lymphoma cells and PC3 prostate cancer cells. This leads to upregulation of glutamine catabolism. Glutaminase converts glutamine to glutamate, which is further catabolized through the tricarboxylic acid cycle for the production of ATP or serves as substrate for glutathione synthesis. The unique means by which Myc regulates glutaminase uncovers a previously unsuspected link between Myc regulation of miRNAs, glutamine metabolism, and energy and reactive oxygen species homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC.

In addition to glycolysis, the oncogenic transcription factor c-MYC (MYC) stimulates glutamine catabolism to fuel growth and proliferation of cancer cells through up-regulating glutaminase (GLS). Glutamine is converted to glutamate by GLS, entering the tricarboxylic acid cycle as an important energy source. Less well-recognized, glutamate can also be converted to proline through Δ(1)-pyrroline-...

متن کامل

c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism

Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes g...

متن کامل

The mTORC1/S6K1 Pathway Regulates Glutamine Metabolism through the eIF4B-Dependent Control of c-Myc Translation

Growth-promoting signaling molecules, including the mammalian target of rapamycin complex 1 (mTORC1), drive the metabolic reprogramming of cancer cells required to support their biosynthetic needs for rapid growth and proliferation. Glutamine is catabolyzed to α-ketoglutarate (αKG), a tricarboxylic acid (TCA) cycle intermediate, through two deamination reactions, the first requiring glutaminase...

متن کامل

Molecular Pathways MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities

Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which ...

متن کامل

MYC-induced cancer cell energy metabolism and therapeutic opportunities.

Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 458  شماره 

صفحات  -

تاریخ انتشار 2009