Long patch base excision repair in mammalian mitochondrial genomes.
نویسندگان
چکیده
The mitochondrial genome is highly susceptible to damage by reactive oxygen species (ROS) generated endogenously as a byproduct of respiration. ROS-induced DNA lesions, including oxidized bases, abasic (AP) sites, and oxidized AP sites, cause DNA strand breaks and are repaired via the base excision repair (BER) pathway in both the nucleus and mitochondria. Repair of damaged bases and AP sites involving 1-nucleotide incorporation, named single nucleotide (SN)-BER, was observed with mitochondrial and nuclear extracts. During SN-BER, the 5'-phosphodeoxyribose (dRP) moiety, generated by AP-endonuclease (APE1), is removed by the lyase activity of DNA polymerase gamma (pol gamma) and polymerase beta in the mitochondria and nucleus, respectively. However, the repair of oxidized deoxyribose fragments at the 5' terminus after strand break would require 5'-exo/endonuclease activity that is provided by the flap endonuclease (FEN-1) in the nucleus, resulting in multinucleotide repair patch (long patch (LP)-BER). Here we show the presence of a 5'-exo/endonuclease in the mitochondrial extracts of mouse and human cells that is involved in the repair of a lyase-resistant AP site analog via multinucleotide incorporation, upstream and downstream to the lesion site. We conclude that LP-BER also occurs in the mitochondria requiring the 5'-exo/endonuclease and pol gamma with 3'-exonuclease activity. Although a FEN-1 antibody cross-reacting species was detected in the mitochondria, it was absent in the LP-BER-proficient APE1 immunocomplex isolated from the mitochondrial extract that contains APE1, pol gamma, and DNA ligase 3. The LP-BER activity was marginally affected in FEN-1-depleted mitochondrial extracts, further supporting the involvement of an unidentified 5'-exo/endonuclease in mitochondrial LP-BER.
منابع مشابه
Membrane association of mitochondrial DNA facilitates base excision repair in mammalian mitochondria
Mitochondrial DNA encodes a set of 13 polypeptides and is subjected to constant oxidative stress due to ROS production within the organelle. It has been shown that DNA repair in the mitochondrion proceeds through both short- and long-patch base excision repair (BER). In the present article, we have used the natural competence of mammalian mitochondria to import DNA and study the sub-mitochondri...
متن کاملSingle-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that th...
متن کاملDna Repair
1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...
متن کاملRemoval of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria.
Repair of oxidative DNA damage in mitochondria was thought limited to short-patch base excision repair (SP-BER) replacing a single nucleotide. However, certain oxidative lesions cannot be processed by SP-BER. Here we report that 2-deoxyribonolactone (dL), a major type of oxidized abasic site, inhibits replication by mitochondrial DNA (mtDNA) polymerase gamma and interferes with SP-BER by covale...
متن کاملMammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA.
Mitochondrial forms of uracil DNA glycosylase and UV endonuclease have been purified and characterized from the mouse plasmacytoma cell line, MPC-11. As in other cell types, the mitochondrial uracil DNA glycosylase has properties very similar to those of the nuclear enzyme, although in this case the mitochondrial activity was also distinguishable by extreme sensitivity to dilution. Three mitoch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 39 شماره
صفحات -
تاریخ انتشار 2008